C.H.W Souza, E. Mercante, V.H.R. Prudente and D.D.D. Justina. 2013. Methods of performance evaluation for the supervised classification of satellite imagery in determining land cover classes. Cien. Inv. Agr. 40(2): 419-428. Satellite imagery, in combination with remote sensing techniques, provides a new opportunity for monitoring and assessing crops with lower cost and greater objectivity than traditional surveys. The present research employed Landsat 5/TM satellite imagery to identify the land cover classes in Cafelândia (Paraná, Brasil), a predominantly agricultural town. Five supervised classification methods (parallelepiped (PL), minimum distance (MND), Mahalanobis distance (MHD), maximum likelihood classifier (MLC) and spectral angle mapper (SAM))... |