|
|
Murphy, Shane; Di Toro, G.; Romano, F.; Scala, A.; Lorito, S.; Spagnuolo, E.; Aretusini, S.; Festa, G.; Piatanesi, A.; Nielsen, S.. |
Seismological, tsunami and geodetic observations have shown that subduction zones are complex systems where the properties of earthquake rupture vary with depth as a result of different pre-stress and frictional conditions. A wealth of earthquakes of different sizes and different source features (e.g. rupture duration) can be generated in subduction zones, including tsunami earthquakes, some of which can produce extreme tsunamigenic events. Here, we offer a geological perspective principally accounting for depth-dependent frictional conditions, while adopting a simplified distribution of on-fault tectonic pre-stress. We combine a lithology-controlled, depth-dependent experimental friction law with 2D elastodynamic rupture simulations for a Tohoku-like... |
Tipo: Text |
Palavras-chave: Subduction zone; Megathrust; Dynamic rupture; Rock physics experiments; Tsunami earthquake. |
Ano: 2018 |
URL: https://archimer.ifremer.fr/doc/00425/53625/54546.pdf |
| |