Water mass ventilation provides an important link between the atmosphere and the global ocean circulation. In this study, we present a newly developed, probabilistic tool for offline water mass tracking. In particular, NEMOTAM, the tangent-linear and adjoint counterpart to the NEMO ocean general circulation model, is modified to allow passive-tracer transport. By terminating dynamic feedbacks in NEMOTAM, tagged water can be tracked forward and backwards in time as a passive dye, producing a probability distribution of pathways and origins, respectively. Upon contact with the surface, the tracer is removed from the system, and a record of ventilation is produced. Two test cases are detailed, examining the creation and fate of North Atlantic Subtropical Mode... |