|
|
|
|
|
Nurrohman, Reza Kusuma; Nugroho, Bayu Dwi Apri; Sudira, Putu; Ngadisih, Ngadisih; Murtiningrum, Murtiningrum. |
Rainfall distribution pattern is very important for sustainable production in the agricultural sector in Tropical region. The near future rainfall amount under changing climate was predicted from 2009 to 2028 by Adaptive Neuro Fuzzy Inference System (ANFIS), which was trained with the rainfall observation data from 1979 to 2013, spatiotemporally in the Central Java Province, Indonesia. Our analysis showed that the predicted rainfall data using ANFIS can represent actual rainfall conditions. Rainfall predicted from 2009 – 2028 in Central Java will experience a decrease in high rainfall in an area of 1615125,2 hectare, which can cause drought. The area that predicted to experience drought in the future are Kebumen, Jepara, Pati, Rembang, Kudus, Grobogan,... |
Tipo: Info:eu-repo/semantics/article |
Palavras-chave: Climate Change; Rainfall Pattern; ANFIS; Drought; Central Java. |
Ano: 2021 |
URL: http://www.cigrjournal.org/index.php/Ejounral/article/view/6461 |
| |
|
|
Bagheri, Nikrooz -. |
This research is carried out to predict energy efficiency of a solar dryer by adaptive neuro-fuzzy inference system (ANFIS) model. In this model, temperatures in the collector inlet, collector outlet and in the dry chamber exit and also absorbed heat energy by collector and necessary energy for evaporation of product moisture were considered as an ANFIS network inputs. To investigate the capability of ANFIS models in prediction of dryer efficiency, empirical model and regression analysis were used and their results were compared by ANFIS models. To evaluate an accuracy ANFIS models, statistical parameters such as mean absolute error, mean squared error, sum squared error, correlation coefficient (R) and probability (P) were calculated. Results indicated... |
Tipo: Info:eu-repo/semantics/article |
Palavras-chave: Agricultural machinery solar drying; Efficiency; ANFIS; Empirical modeling.. |
Ano: 2015 |
URL: http://www.cigrjournal.org/index.php/Ejounral/article/view/2972 |
| |
|
| |
|
| |
|
|
Silva,Aldo A. V. da; Silva,Inara A. F.; Teixeira Filho,Marcelo C. M.; Buzetti,Salatiér; Teixeira,Marcelo C. M.. |
Atualmente, novas técnicas de processamento de dados, tais como redes neurais, lógica nebulosa (fuzzy) e sistemas híbridos, são utilizadas para elaborar modelos de predição em sistemas complexos e estimar parâmetros desejados. Neste artigo investigou-se a habilidade de se desenvolver um modelo de inferência adaptativo neuro fuzzy para estimação da produtividade de trigo utilizando-se uma base de dados da combinação dos seguintes tratamentos: cinco doses de N (0, 50, 100, 150 e 200 kg ha-1); três fontes (Entec, sulfato de amônio e ureia); duas épocas de aplicação de N (na semeadura ou em cobertura) e dois cultivares de trigo (E21 e IAC 370), avaliados durante dois anos, em Selvíria, MS. Através dos dados de entrada e saída o sistema de inferência neuro... |
Tipo: Info:eu-repo/semantics/article |
Palavras-chave: Triticum aestivum L.; Nitrogênio; Redes neurais; ANFIS; Sistemas híbridos. |
Ano: 2014 |
URL: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662014000200008 |
| |
|
|
|