Systematic, physically based acquisition of information regarding soils is required to meet increasing demand in agricultural and environmental systems. The objective of this work is to evaluate the use of multiple endmember spectral mixture analysis (MESMA) for mapping soil attributes within ASTER imagery. A total of 184 georeferenced soil samples were collected from Rafard, São Paulo State, Brazil. These points were overlain on the satellite image to collect spectral data. The laboratory and image information were then arranged and prepared by clustering samples into classes based on the following soil attributes: texture, organic matter, base saturation (V%), CEC and total iron. Following this classification, mean spectral curves were generated for... |