Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Ordenar por: 

RelevânciaAutorTítuloAnoImprime registros no formato resumido
Registros recuperados: 2
Primeira ... 1 ... Última
Imagem não selecionada

Imprime registro no formato completo
An Empirical Evaluation of the Local Texture Description Framework-Based Modified Local Directional Number Pattern with Various Classifiers for Face Recognition BABT
Rose,R. Reena; Meena,K.; Suruliandi,A..
ABSTRACT Texture is one of the chief characteristics of an image. In recent years, local texture descriptors have garnered attention among researchers in describing effective texture patterns to demarcate facial images. A feature descriptor titled Local Texture Description Framework-based Modified Local Directional Number pattern (LTDF_MLDN), capable of encoding texture patterns with pixels that lie at dissimilar regions, has been proposed recently to describe effective features for face images. However, the role of the descriptor can differ with different classifiers and distance metrics for diverse issues in face recognition. Hence, in this paper, an extensive evaluation of the LTDF_MLDN is carried out with an Extreme Learning Machine (ELM), a Support...
Tipo: Info:eu-repo/semantics/article Palavras-chave: Face Recognition; Texture Descriptors; Local Texture Description Framework; Local Texture Description Framework-Based Modified Local Directional Number Pattern; Classifiers; Distance Metrics.
Ano: 2016 URL: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-89132016000300405
Imagem não selecionada

Imprime registro no formato completo
Methods of performance evaluation for the supervised classification of satellite imagery in determining land cover classes Ciencia e Investigación Agraria
Souza,Carlos H. Wachholz de; Mercante,Erivelto; Prudente,Victor H. R.; Justina,Diego D.D..
C.H.W Souza, E. Mercante, V.H.R. Prudente and D.D.D. Justina. 2013. Methods of performance evaluation for the supervised classification of satellite imagery in determining land cover classes. Cien. Inv. Agr. 40(2): 419-428. Satellite imagery, in combination with remote sensing techniques, provides a new opportunity for monitoring and assessing crops with lower cost and greater objectivity than traditional surveys. The present research employed Landsat 5/TM satellite imagery to identify the land cover classes in Cafelândia (Paraná, Brasil), a predominantly agricultural town. Five supervised classification methods (parallelepiped (PL), minimum distance (MND), Mahalanobis distance (MHD), maximum likelihood classifier (MLC) and spectral angle mapper (SAM))...
Tipo: Journal article Palavras-chave: Accuracy indices; Agricultural landscape; Classifiers; Remote sensing.
Ano: 2013 URL: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-16202013000200016
Registros recuperados: 2
Primeira ... 1 ... Última
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional