This work was carried out to evaluate the statistical properties of eight nonlinear models used to predict nitrogen mineralization in soils of the Southern Minas Gerais State, Brazil. The parameter estimations for nonlinear models with and without structure of autoregressive errors was made by the least squares method. First, a structure of second order autoregressive errors, AR(2) was considered for all nonlinear models and then the significance of the autocorrelation parameters was verified. Among the models, the Juma presented an autocorrelation of second order, and the model of Broadbent presented one of first order. In summary, these models presented significant autocorrelation parameters. To estimate the parameters of nonlinear models, the SAS... |