Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Ordenar por: 

RelevânciaAutorTítuloAnoImprime registros no formato resumido
Registros recuperados: 1
Primeira ... 1 ... Última
Imagem não selecionada

Imprime registro no formato completo
Visualizing main effects and interactions for binary logit models AgEcon
Mitchell, Michael N.; Chen, Xiao.
This paper considers the role of covariates when using predicted probabilities to interpret main effects and interactions in logit models. While predicted probabilities are very intuitive for interpreting main effects and interactions, the pattern of results depends on the contribution of covariates. We introduce a concept called the covariate contribution, which reflects the aggregate contribution of all of the remaining predictors (covariates) in the model and a family of tools to help visualize the relationship between predictors and the predicted probabilities across a variety of covariate contributions. We believe this strategy and the accompanying tools can help researchers who wish to use predicted probabilities as an interpretive framework for...
Tipo: Journal Article Palavras-chave: Logistic regression; Predicted probabilities; Main effects; Interactions; Covariate contribution; Research Methods/ Statistical Methods.
Ano: 2005 URL: http://purl.umn.edu/117500
Registros recuperados: 1
Primeira ... 1 ... Última
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional