Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Ordenar por: 

RelevânciaAutorTítuloAnoImprime registros no formato resumido
Registros recuperados: 5
Primeira ... 1 ... Última
Imagem não selecionada

Imprime registro no formato completo
Regresión espacial de precipitaciones extremas en el estado de Tabasco. Colegio de Postgraduados
Pérez Figueroa, Rebeca Alejandra.
Las precipitaciones extremas en el estado de Tabasco, México, causan pérdidas económicas y serios estragos a los ecosistemas cada año. Esta investigación se basa en el desarrollo de un análisis de eventos de precipitación extrema en Tabasco empleando la información en la base de datos MAYA que comprende observaciones de lluvia diarias para nodos-geográficamente equidistantes. El principal objetivo es proponer un modelo de regresión espacial para datos de precipitaciones extremas con el fin de estimar períodos de retorno vía un modelo jerárquico Bayesiano, y proveer de mapas de riesgo basados en el modelo ajustado así como en la distribución predictiva de precipitación extrema. Se encontró que la localización geográfica incrementa la exactitud en la...
Palavras-chave: Bayesiano; Regresión espacial; Lluvia extrema; Bayesian; Spatial regression; Extreme rainfall; Estadística; Maestría.
Ano: 2012 URL: http://hdl.handle.net/10521/782
Imagem não selecionada

Imprime registro no formato completo
A review of techniques for spatial modeling in geographical, conservation and landscape genetics Genet. Mol. Biol.
Diniz-Filho,José Alexandre Felizola; Nabout,João Carlos; Telles,Mariana Pires de Campos; Soares,Thannya Nascimento; Rangel,Thiago Fernando L.V.B..
Most evolutionary processes occur in a spatial context and several spatial analysis techniques have been employed in an exploratory context. However, the existence of autocorrelation can also perturb significance tests when data is analyzed using standard correlation and regression techniques on modeling genetic data as a function of explanatory variables. In this case, more complex models incorporating the effects of autocorrelation must be used. Here we review those models and compared their relative performances in a simple simulation, in which spatial patterns in allele frequencies were generated by a balance between random variation within populations and spatially-structured gene flow. Notwithstanding the somewhat idiosyncratic behavior of the...
Tipo: Info:eu-repo/semantics/article Palavras-chave: Autocorrelation; Geographical genetics; Isolation-by-distance; Landscape genetics; Spatial regression.
Ano: 2009 URL: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572009000200001
Imagem não selecionada

Imprime registro no formato completo
Why the Poor in Rural Malawi Are Where They Are: An Analysis of the Spatial Determinants of the Local Prevalence of Poverty AgEcon
Benson, Todd; Chamberlin, Jordan; Rhinehart, Ingrid.
We examine the spatial determinants of the prevalence of poverty for small spatially defined populations in rural Malawi. Poverty prevalence was estimated using a small-area poverty estimation technique. A theoretical approach based on the risk chain conceptualization of household economic vulnerability guided our selection of a set of potential risk and coping strategies—the determinants of our model—that could be represented spatially. These were used in two analyses to develop global and local models, respectively. In our global model—a spatial error model—only eight of the more than two dozen determinants selected for analysis proved significant. In contrast, all of the determinants considered were significant in at least some of the local models of...
Tipo: Working or Discussion Paper Palavras-chave: Spatial regression; Poverty determinants; Poverty mapping; Malawi; Food Security and Poverty.
Ano: 2005 URL: http://purl.umn.edu/59601
Imagem não selecionada

Imprime registro no formato completo
Does Social Capital Have a Role in Environmental Kuznets Curve? Spatial Panel Regression Approach AgEcon
Paudel, Krishna P.; Zapata, Hector O.; Schafer, Mark J.; Marzoughi, Hassan.
We advance a case for an inclusion of social capital in the environmental Kuznets curve analysis using highly disaggregated data on water pollution in Louisiana. A social capital index and other variables are used in parametric and spatial panel regression models to explain water pollution dynamics.
Tipo: Conference Paper or Presentation Palavras-chave: Social capital; Principal component analysis; Environmental Kuznets curve; Spatial regression; Environmental Economics and Policy.
Ano: 2005 URL: http://purl.umn.edu/19457
Imagem não selecionada

Imprime registro no formato completo
Best fit model selection for spatial differences (regression) in the profitability analysis of precision phosphate (P) application to winter cereals in Precision Agriculture (PA) AgEcon
Hough, Ella Christina; Nell, Wilhelm T.; Maine, Ntsikane; Groenewald, Jan A.; van der Rijst, M..
Phosphates (P) are an important nutrient required by every living plant and animal cell, and deficiencies in soils could cause limited crop production, thereby reducing profitability. Phosphates are also a primary nutrient essential for root development and crop production, and are needed in the tissues of a plant where cells rapidly divide and enlarge. Precision agriculture (PA) could assist the farmer in applying the correct amount of P to the part of the field where it is required most. Variable rate technology (VRT) is a potential tool that can help with the development of strategies for phosphate fertilizer management. On-field trials were conducted on a commercial farm in the Western Cape Province; As many as five soil types occur on each field...
Tipo: Journal Article Palavras-chave: Precision agriculture; Variable-rate phosphate application; Single rate phosphate application; Profitability; Spatial differences; Restricted maximum-likelihood model (RELM); Spatial regression; Best fit model selection; South Africa; Crop Production/Industries.
Ano: 2010 URL: http://purl.umn.edu/96642
Registros recuperados: 5
Primeira ... 1 ... Última
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional