Abstract This paper takes into account the estimation for the unknown parameters of the Gompertz distribution from the frequentist and Bayesian view points by using both objective and subjective prior distributions. We first derive non-informative priors using formal rules, such as Jefreys prior and maximal data information prior (MDIP), based on Fisher information and entropy, respectively. We also propose a prior distribution that incorporate the expert’s knowledge about the issue under study. In this regard, we assume two independent gamma distributions for the parameters of the Gompertz distribution and it is employed for an elicitation process based on the predictive prior distribution by using Laplace approximation for integrals. We suppose that an... |