|
|
|
|
|
Martínez-vicente, Víctor; Clark, James R.; Corradi, Paolo; Aliani, Stefano; Arias, Manuel; Bochow, Mathias; Bonnery, Guillaume; Cole, Matthew; Cózar, Andrés; Donnelly, Rory; Echevarría, Fidel; Galgani, Francois; Garaba, Shungudzemwoyo P.; Goddijn-murphy, Lonneke; Lebreton, Laurent; Leslie, Heather A.; Lindeque, Penelope K.; Maximenko, Nikolai; Martin-lauzer, François-régis; Moller, Delwyn; Murphy, Peter; Palombi, Lorenzo; Raimondi, Valentina; Reisser, Julia; Romero, Laia; Simis, Stefan G.h.; Sterckx, Sindy; Thompson, Richard C.; Topouzelis, Konstantinos N.; Van Sebille, Erik Van; Veiga, Joana Mira; Vethaak, A. Dick. |
Sustained observations are required to determine the marine plastic debris mass balance and to support effective policy for planning remedial action. However, observations currently remain scarce at the global scale. A satellite remote sensing system could make a substantial contribution to tackling this problem. Here, we make initial steps towards the potential design of such a remote sensing system by: (1) identifying the properties of marine plastic debris amenable to remote sensing methods and (2) highlighting the oceanic processes relevant to scientific questions about marine plastic debris. Remote sensing approaches are reviewed and matched to the optical properties of marine plastic debris and the relevant spatio-temporal scales of observation to... |
Tipo: Text |
Palavras-chave: Remote sensing; Marine plastic debris; Mission requirements; Hyperspectral sensors; Multispectral imagers; High spatial resolution; Sensors synergy; Submesoscale processes. |
Ano: 2019 |
URL: https://archimer.ifremer.fr/doc/00589/70077/68050.pdf |
| |
|
|
Van Sebille, Erik; Aliani, Stefano; Law, Kara Lavender; Maximenko, Nikolai; Alsina, José M; Bagaev, Andrei; Bergmann, Melanie; Chapron, Bertrand; Chubarenko, Irina; Cózar, Andrés; Delandmeter, Philippe; Egger, Matthias; Fox-kemper, Baylor; Garaba, Shungudzemwoyo P; Goddijn-murphy, Lonneke; Hardesty, Britta Denise; Hoffman, Matthew J; Isobe, Atsuhiko; Jongedijk, Cleo E; Kaandorp, Mikael L A; Khatmullina, Liliya; Koelmans, Albert A; Kukulka, Tobias; Laufkötter, Charlotte; Lebreton, Laurent; Lobelle, Delphine; Maes, Christophe; Martinez-vicente, Victor; Morales Maqueda, Miguel Angel; Poulain-zarcos, Marie; Rodríguez, Ernesto; Ryan, Peter G; Shanks, Alan L; Shim, Won Joon; Suaria, Giuseppe; Thiel, Martin; Van Den Bremer, Ton S; Wichmann, David. |
Marine plastic debris floating on the ocean surface is a major environmental problem. However, its distribution in the ocean is poorly mapped, and most of the plastic waste estimated to have entered the ocean from land is unaccounted for. Better understanding of how plastic debris is transported from coastal and marine sources is crucial to quantify and close the global inventory of marine plastics, which in turn represents critical information for mitigation or policy strategies. At the same time, plastic is a unique tracer that provides an opportunity to learn more about the physics and dynamics of our ocean across multiple scales, from the Ekman convergence in basin-scale gyres to individual waves in the surfzone. In this review, we comprehensively... |
Tipo: Text |
|
Ano: 2020 |
URL: https://archimer.ifremer.fr/doc/00610/72213/71011.pdf |
| |
|
|
Maximenko, Nikolai; Corradi, Paolo; Law, Kara Lavender; Van Sebille, Erik; Garaba, Shungudzemwoyo P.; Lampitt, Richard Stephen; Galgani, Francois; Martinez-vicente, Victor; Goddijn-murphy, Lonneke; Veiga, Joana Mira; Thompson, Richard C.; Maes, Christophe; Moller, Delwyn; Löscher, Carolin Regina; Addamo, Anna Maria; Lamson, Megan R.; Centurioni, Luca R.; Posth, Nicole R.; Lumpkin, Rick; Vinci, Matteo; Martins, Ana Maria; Pieper, Catharina Diogo; Isobe, Atsuhiko; Hanke, Georg; Edwards, Margo; Chubarenko, Irina P.; Rodriguez, Ernesto; Aliani, Stefano; Arias, Manuel; Asner, Gregory P.; Brosich, Alberto; Carlton, James T.; Chao, Yi; Cook, Anna-marie; Cundy, Andrew B.; Galloway, Tamara S.; Giorgetti, Alessandra; Goni, Gustavo Jorge; Guichoux, Yann; Haram, Linsey E.; Hardesty, Britta Denise; Holdsworth, Neil; Lebreton, Laurent; Leslie, Heather A.; Macadam-somer, Ilan; Mace, Thomas; Manuel, Mark; Marsh, Robert; Martinez, Elodie; Mayor, Daniel J.; Le Moigne, Morgan; Molina Jack, Maria Eugenia; Mowlem, Matt Charles; Obbard, Rachel W.; Pabortsava, Katsiaryna; Robberson, Bill; Rotaru, Amelia-elena; Ruiz, Gregory M.; Spedicato, Maria Teresa; Thiel, Martin; Turra, Alexander; Wilcox, Chris. |
Plastics and other artificial materials pose new risks to the health of the ocean. Anthropogenic debris travels across large distances and is ubiquitous in the water and on shorelines, yet, observations of its sources, composition, pathways, and distributions in the ocean are very sparse and inaccurate. Total amounts of plastics and other man-made debris in the ocean and on the shore, temporal trends in these amounts under exponentially increasing production, as well as degradation processes, vertical fluxes, and time scales are largely unknown. Present ocean circulation models are not able to accurately simulate drift of debris because of its complex hydrodynamics. In this paper we discuss the structure of the future integrated marine debris observing... |
Tipo: Text |
Palavras-chave: Plastics; Marine debris; Sensor development; Observing network; Ecosystemstressors; Maritime safety. |
Ano: 2019 |
URL: https://archimer.ifremer.fr/doc/00511/62272/66477.pdf |
| |
|
|
|