|
|
|
Registros recuperados: 46 | |
|
| |
|
|
BARBEDO, J. G. A.. |
Abstract: Unmanned aerial vehicles (UAVs) are becoming a valuable tool to collect data in a variety of contexts. Their use in agriculture is particularly suitable, as those areas are often vast, making ground scouting difficult, and sparsely populated, which means that injury and privacy risks are not as important as in urban settings. Indeed, the use of UAVs for monitoring and assessing crops, orchards, and forests has been growing steadily during the last decade, especially for the management of stresses such as water, diseases, nutrition deficiencies, and pests. This article presents a critical overview of the main advancements on the subject, focusing on the strategies that have been used to extract the information contained in the images captured... |
Tipo: Artigo de periódico |
Palavras-chave: Imagem de sensor; Stress de planta; Drone; Crop; Orchard; Unmanned aerial systems; Agricultura de Precisão; Stress; Precision agriculture; Unmanned aerial vehicles. |
Ano: 2019 |
URL: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1108655 |
| |
|
| |
|
|
BARBEDO, J. G. A.; KOENIGKAN, L. V.; SANTOS, T. T.; SANTOS, P. M.. |
Abstract: Unmanned aerial vehicles (UAVs) are being increasingly viewed as valuable tools to aid the management of farms. This kind of technology can be particularly useful in the context of extensive cattle farming, as production areas tend to be expansive and animals tend to be more loosely monitored. With the advent of deep learning, and convolutional neural networks (CNNs) in particular, extracting relevant information from aerial images has become more effective. Despite the technological advancements in drone, imaging and machine learning technologies, the application of UAVs for cattle monitoring is far from being thoroughly studied, with many research gaps still remaining. In this context, the objectives of this study were threefold: (1) to... |
Tipo: Artigo de periódico |
Palavras-chave: Veículo aéreo não tripulado; Redes neurais; Drone; Aprendizado profundo; Convolutional neural networks; Deep learning; Canchim breed; Nelore breed; Gado de Corte; Gado Canchim; Gado Nelore; Cattle; Unmanned aerial vehicles. |
Ano: 2019 |
URL: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1116449 |
| |
|
|
BARBEDO, J. G. A.; KOENIGKAN, L. V.; HALFELD-VIEIRA, B. de A.; COSTA, R. V. da; NECHET, K. de L.; GODOY, C. V.; LOBO JUNIOR, M.; PATRÍCIO, F. R. A.; TALAMINI, V.; CHITARRA, L. G.; OLIVEIRA, S. A. S. de; ISHIDA, A. K. N.; FERNANDES, J. M. C.; SANTOS, T. T.; CAVALCANTI, F. R.; TERAO, D.; ANGELOTTI, F.. |
Over the last few years, considerable effort has been spent by Embrapa in the construction of a plant disease database representative enough for the development of effective methods for automatic plant disease detection and recognition. In October of 2016, this database, called PDDB, had 2326 images of 171 diseases and other disorders affecting 21 plant species. PDDB size, although considerable, is not enough to allow the use of powerful techniques such as deep learning. In order to increase its size, each image was subdivided according to certain criteria, increasing the number of images to 46,513. Both the original (PDDB) and subdivided (XDB)databases are now being made freely available for academic research purposes, thus supporting new studies and... |
Tipo: Artigo de periódico |
Palavras-chave: Patologia vegetal; Banco de dados; Aprendizagem profunda; Processamento de imagem; Deep learning; Doença de Planta; Plant pathology; Plant diseases and disorders; Databases; Image analysis. |
Ano: 2018 |
URL: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1094883 |
| |
|
|
BARBEDO, J. G. A.; KOENIGKAN, L. V.; HALFELD-VIEIRA, B. de A.; COSTA, R. V. da; NECHET, K. de L.; GODOY, C. V.; LOBO JUNIOR, M.; PATRÍCIO, F. R. A.; TALAMINI, V.; CHITARRA, L. G.; OLIVEIRA, S. A. S. de; ISHIDA, A. K. N.; FERNANDES, J. M. C.; SANTOS, T. T.; CAVALCANTI, F. R.; TERAO, D.; ANGELOTTI, F.. |
Over the last few years, considerable effort has been spent by Embrapa in the construction of a plant disease database representative enough for the development of effective methods for automatic plant disease detection and recognition. In October of 2016, this database, called PDDB, had 2326 images of 171 diseases and other disorders affecting 21 plant species. PDDB size, although considerable, is not enough to allow the use of powerful techniques such as deep learning. In order to increase its size, each image was subdivided according to certain criteria, increasing the number of images to 46,513. Both the original (PDDB) and subdivided (XDB)databases are now being made freely available for academic research purposes, thus supporting new studies and... |
Tipo: Artigo de periódico |
Palavras-chave: Patologia vegetal; Banco de dados; Aprendizagem profunda; Imagem em processamento; Doença de Planta; Plant pathology; Plant diseases and disorders; Databases. |
Ano: 2018 |
URL: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1097219 |
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
BARBEDO, J. G. A.. |
ABSTRACT. Automation of essential processes in agriculture is becoming widespread, especially when fast action is required. However, some processes that could greatly benefit from some degree of automation have such difficult characteristics, that even small improvements pose a great challenge. This is the case of fish disease diagnosis, a problem of great economic, social and ecological interest. Difficult problems like this often require a interdisciplinary approach to be tackled properly, as multifaceted issues can greatly benefit from the inclusion of different perspectives. In this context, this paper presents the most recent advances in research subjects such as expert systems applied to fish disease diagnosis, computer vision applied to aquaculture,... |
Tipo: Artigo de periódico |
Palavras-chave: Sistemas especialistas; Processamento de imagem digital; Doenças em peixes.; Automação; Aquicultura.; Expert systems; Image analysis; Aquaculture; Automation; Fish diseases. |
Ano: 2014 |
URL: http://www.alice.cnptia.embrapa.br/alice/handle/doc/986333 |
| |
|
| |
Registros recuperados: 46 | |
|
|
|