|
|
|
|
|
Eyring, Veronika; Righi, Mattia; Lauer, Axel; Evaldsson, Martin; Wenzel, Sabrina; Jones, Colin; Anav, Alessandro; Andrews, Oliver; Cionni, Irene; Davin, Edouard L.; Deser, Clara; Ehbrecht, Carsten; Friedlingstein, Pierre; Gleckler, Peter; Gottschaldt, Klaus-dirk; Hagemann, Stefan; Juckes, Martin; Kindermann, Stephan; Krasting, John; Kunert, Dominik; Levine, Richard; Loew, Alexander; Maekelae, Jarmo; Martin, Gill; Mason, Erik; Phillips, Adam S.; Read, Simon; Rio, Catherine; Roehrig, Romain; Senftleben, Daniel; Sterl, Andreas; Van Ulft, Lambertus H.; Walton, Jeremy; Wang, Shiyu; Williams, Keith D.. |
A community diagnostics and performance metrics tool for the evaluation of Earth system models (ESMs) has been developed that allows for routine comparison of single or multiple models, either against predecessor versions or against observations. The priority of the effort so far has been to target specific scientific themes focusing on selected essential climate variables (ECVs), a range of known systematic biases common to ESMs, such as coupled tropical climate variability, monsoons, Southern Ocean processes, continental dry biases, and soil hydrology-climate interactions, as well as atmospheric CO2 budgets, tropospheric and stratospheric ozone, and tropospheric aerosols. The tool is being developed in such a way that additional analyses can easily be... |
Tipo: Text |
|
Ano: 2016 |
URL: https://archimer.ifremer.fr/doc/00383/49428/49862.pdf |
| |
|
|
Seferian, Roland; Nabat, Pierre; Michou, Martine; Saint-martin, David; Voldoire, Aurore; Colin, Jeanne; Decharme, Bertrand; Delire, Christine; Berthet, Sarah; Chevallier, Matthieu; Senesi, Stephane; Franchisteguy, Laurent; Vial, Jessica; Mallet, Marc; Joetzjer, Emilie; Geoffroy, Olivier; Gueremy, Jean-francois; Moine, Marie-pierre; Msadek, Rym; Ribes, Aurelien; Rocher, Matthias; Roehrig, Romain; Salas-y-melia, David; Sanchez, Emilia; Terray, Laurent; Valcke, Sophie; Waldman, Robin; Aumont, Olivier; Bopp, Laurent; Deshayes, Julie; Ethe, Christian; Madec, Gurvan. |
This study introduces CNRM-ESM2-1, the Earth system (ES) model of second generation developed by CNRM-CERFACS for the sixth phase of the Coupled Model Intercomparison Project (CMIP6). CNRM-ESM2-1 offers a higher model complexity than the Atmosphere-Ocean General Circulation Model CNRM-CM6-1 by adding interactive ES components such as carbon cycle, aerosols, and atmospheric chemistry. As both models share the same code, physical parameterizations, and grid resolution, they offer a fully traceable framework to investigate how far the represented ES processes impact the model performance over present-day, response to external forcing and future climate projections. Using a large variety of CMIP6 experiments, we show that represented ES processes impact more... |
Tipo: Text |
|
Ano: 2019 |
URL: https://archimer.ifremer.fr/doc/00676/78800/81052.pdf |
| |
|
|
|