|
|
|
|
|
Silva,Gabi Nunes; Nascimento,Moysés; Sant’Anna,Isabela de Castro; Cruz,Cosme Damião; Caixeta,Eveline Teixeira; Carneiro,Pedro Crescêncio Souza; Rosado,Renato Domiciano Silva; Pestana,Kátia Nogueira; Almeida,Dênia Pires de; Oliveira,Marciane da Silva. |
Abstract: The objective of this work was to evaluate the use of artificial neural networks in comparison with Bayesian generalized linear regression to predict leaf rust resistance in Arabica coffee (Coffea arabica). This study used 245 individuals of a F2 population derived from the self-fertilization of the F1 H511-1 hybrid, resulting from a crossing between the susceptible cultivar Catuaí Amarelo IAC 64 (UFV 2148-57) and the resistant parent Híbrido de Timor (UFV 443-03). The 245 individuals were genotyped with 137 markers. Artificial neural networks and Bayesian generalized linear regression analyses were performed. The artificial neural networks were able to identify four important markers belonging to linkage groups that have been recently mapped,... |
Tipo: Info:eu-repo/semantics/article |
Palavras-chave: Coffea arabica; Hemileia vastatrix; Artificial intelligence; Molecular markers; Prediction. |
Ano: 2017 |
URL: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-204X2017000300186 |
| |
|
| |
|
|
|