Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Ordenar por: 

RelevânciaAutorTítuloAnoImprime registros no formato resumido
Registros recuperados: 10
Primeira ... 1 ... Última
Imagem não selecionada

Imprime registro no formato completo
A global inventory of small floating plastic debris ArchiMer
Van Sebille, Erik; Wilcox, Chris; Lebreton, Laurent; Maximenko, Nikolai; Hardesty, Britta Denise; Van Franeker, Jan A.; Eriksen, Marcus; Siegel, David; Galgani, Francois; Law, Kara Lavender.
Microplastic debris floating at the ocean surface can harm marine life. Understanding the severity of this harm requires knowledge of plastic abundance and distributions. Dozens of expeditions measuring microplastics have been carried out since the 1970s, but they have primarily focused on the North Atlantic and North Pacific accumulation zones, with much sparser coverage elsewhere. Here, we use the largest dataset of microplastic measurements assembled to date to assess the confidence we can have in global estimates of microplastic abundance and mass. We use a rigorous statistical framework to standardize a global dataset of plastic marine debris measured using surface-trawling plankton nets and coupled this with three different ocean circulation models...
Tipo: Text Palavras-chave: Marine debris; Ocean circulation; Model comparison.
Ano: 2015 URL: http://archimer.ifremer.fr/doc/00309/42053/41349.pdf
Imagem não selecionada

Imprime registro no formato completo
A global mean sea surface temperature dataset for the Last Interglacial (129–116 ka) and contribution of thermal expansion to sea level change ArchiMer
Turney, Chris S. M.; Jones, Richard T.; Mckay, Nicholas P.; Van Sebille, Erik; Thomas, Zoë A.; Hillenbrand, Claus-dieter; Fogwill, Christopher J..
A valuable analogue for assessing Earth's sensitivity to warming is the Last Interglacial (LIG; 129–116 ka), when global temperatures (0 to +2 ∘C) and mean sea level (+6 to 11 m) were higher than today. The direct contribution of warmer conditions to global sea level (thermosteric) is uncertain. We report here a global network of LIG sea surface temperatures (SST) obtained from various published temperature proxies (e.g. faunal and floral plankton assemblages, Mg ∕ Ca ratios of calcareous organisms, and alkenone UK′37). We summarize the current limitations of SST reconstructions for the LIG and the spatial temperature features of a naturally warmer world. Because of local δ18O seawater changes, uncertainty in the age models of marine cores, and differences...
Tipo: Text
Ano: 2020 URL: https://archimer.ifremer.fr/doc/00663/77549/79436.pdf
Imagem não selecionada

Imprime registro no formato completo
Integrated Observations of Global Surface Winds, Currents, and Waves: Requirements and Challenges for the Next Decade ArchiMer
Villas Bôas, Ana B.; Ardhuin, Fabrice; Ayet, Alex; Bourassa, Mark A.; Brandt, Peter; Chapron, Bertrand; Cornuelle, Bruce D.; Farrar, J. T.; Fewings, Melanie R.; Fox-kemper, Baylor; Gille, Sarah T.; Gommenginger, Christine; Heimbach, Patrick; Hell, Momme C.; Li, Qing; Mazloff, Matthew R.; Merrifield, Sophia T.; Mouche, Alexis; Rio,; Rodriguez, Ernesto; Shutler, Jamie D.; Subramanian, Aneesh C.; Terrill, Eric J.; Tsamados, Michel; Ubelmann, Clement; Van Sebille, Erik.
Ocean surface winds, currents, and waves play a crucial role in exchanges of momentum, energy, heat, freshwater, gases, and other tracers between the ocean, atmosphere, and ice. Despite surface waves being strongly coupled to the upper ocean circulation and the overlying atmosphere, efforts to improve ocean, atmospheric, and wave observations and models have evolved somewhat independently. From an observational point of view, community efforts to bridge this gap have led to proposals for satellite Doppler oceanography mission concepts, which could provide unprecedented measurements of absolute surface velocity and directional wave spectrum at global scales. This paper reviews the present state of observations of surface winds, currents, and waves, and it...
Tipo: Text Palavras-chave: Air-sea interactions; Doppler oceanography from space; Surface waves; Absolute surface velocity; Ocean surface winds.
Ano: 2019 URL: https://archimer.ifremer.fr/doc/00509/62083/66271.pdf
Imagem não selecionada

Imprime registro no formato completo
Lagrangian ocean analysis: fundamentals and practices ArchiMer
Van Sebille, Erik; Griffies, Stephen M.; Abernathey, Ryan; Adams, Thomas P.; Berloff, Pavel; Biastoch, Arne; Blanke, Bruno; Chassignet, Eric P.; Cheng, Yu; Cotter, Colin J.; Deleersnijder, Eric; Doos, Kristofer; Drake, Henri F.; Drijfhout, Sybren; Gary, Stefan F.; Heemink, Arnold W.; Kjellsson, Joakim; Koszalka, Inga Monika; Lange, Michael; Lique, Camille; Macgilchrist, Graeme A.; Marsh, Robert; Adame, C. Gabriela Mayorga; Mcadam, Ronan; Nencioli, Francesco; Paris, Claire B.; Piggott, Matthew D.; Polton, Jeff A.; Ruehs, Siren; Shah, Syed H. A. M.; Thomas, Matthew; Wang, Jinbo; Wolfram, Phillip J.; Zanna, Laure; Zika, Jan D..
Lagrangian analysis is a powerful way to analyse the output of ocean circulation models and other ocean velocity data such as from altimetry. In the Lagrangian approach, large sets of virtual particles are integrated within the three-dimensional, time-evolving velocity fields. Over several decades, a variety of tools and methods for this purpose have emerged. Here, we review the state of the art in the field of Lagrangian analysis of ocean velocity data, starting from a fundamental kinematic framework and with a focus on large-scale open ocean applications. Beyond the use of explicit velocity fields, we consider the influence of unresolved physics and dynamics on particle trajectories. We comprehensively list and discuss the tools currently available for...
Tipo: Text Palavras-chave: Ocean circulation; Lagrangian analysis; Connectivity; Particle tracking; Future modelling.
Ano: 2018 URL: http://archimer.ifremer.fr/doc/00412/52324/53099.pdf
Imagem não selecionada

Imprime registro no formato completo
Measuring currents, ice drift, and waves from space: the Sea surface KInematics Multiscale monitoring (SKIM) concept ArchiMer
Ardhuin, Fabrice; Aksenov, Yevgueny; Benetazzo, Alvise; Bertino, Laurent; Brandt, Peter; Caubet, Eric; Chapron, Bertrand; Collard, Fabrice; Cravatte, Sophie; Delouis, Jean Marc; Dias, Frederic; Dibarboure, Gerald; Gaultier, Lucile; Johannessen, Johnny; Korosov, Anton; Manucharyan, Georgy; Menemenlis, Dimitris; Menendez, Melisa; Monnier, Goulven; Mouche, Alexis; Nouguier, Frederic; Nurser, George; Rampal, Pierre; Reniers, Ad; Rodriguez, Ernesto; Stopa, Justin; Tison, Celine; Ubelmann, Clement; Van Sebille, Erik; Xie, Jiping.
We propose a satellite mission that uses a near-nadir Ka-band Doppler radar to measure surface currents, ice drift and ocean waves at spatial scales of 40 km and more, with snapshots at least every day for latitudes 75 to 82 degrees, and every few days for other latitudes. The use of incidence angles of 6 and 12 degrees allows for measurement of the directional wave spectrum, which yields accurate corrections of the wave-induced bias in the current measurements. The instrument's design, an algorithm for current vector retrieval and the expected mission performance are presented here. The instrument proposed can reveal features of tropical ocean and marginal ice zone (MIZ) dynamics that are inaccessible to other measurement systems, and providing global...
Tipo: Text
Ano: 2018 URL: http://archimer.ifremer.fr/doc/00442/55318/56843.pdf
Imagem não selecionada

Imprime registro no formato completo
Quantitative estimate of the paleo-Agulhas leakage ArchiMer
Caley, Thibaut; Peeters, Frank J. C.; Biastoch, Arne; Rossignol, Linda; Van Sebille, Erik; Durgadoo, Jonathan; Malaize, Bruno; Giraudeau, Jacques; Arthur, Kristina; Zahn, Rainer.
The Indian-Atlantic water exchange south of Africa (Agulhas leakage) is a key component of the global ocean circulation. No quantitative estimation of the paleo-Agulhas leakage exists. We quantify the variability in interocean exchange over the past 640,000 years, using planktic foraminiferal assemblage data from two marine sediment records to define an Agulhas leakage efficiency index. We confirm the validity of our new approach with a numerical ocean model that realistically simulates the modern Agulhas leakage changes. Our results suggest that, during the past several glacial-interglacial cycles, the Agulhas leakage varied by ~10 sverdrup and more during major climatic transitions. This lends strong credence to the hypothesis that modifications in the...
Tipo: Text Palavras-chave: Quantitative palaeo Agulhas leakage; Planktic foraminiferal; Numerical ocean model; Overturning circulation.
Ano: 2014 URL: https://archimer.ifremer.fr/doc/00291/40172/39028.pdf
Imagem não selecionada

Imprime registro no formato completo
SKIM, a Candidate Satellite Mission Exploring Global Ocean Currents and Waves ArchiMer
Ardhuin, Fabrice; Brandt, Peter; Gaultier, Lucile; Donlon, Craig; Battaglia, Alessandro; Boy, François; Casal, Tania; Chapron, Bertrand; Collard, Fabrice; Cravatte, Sophie; Delouis, Jean Marc; De Witte, Erik; Dibarboure, Gerald; Engen, Geir; Johnsen, Harald; Lique, Camille; Lopez-dekker, Paco; Maes, Christophe; Martin, Adrien; Marié, Louis; Menemenlis, Dimitris; Nouguier, Frederic; Peureux, Charles; Rampal, Pierre; Ressler, Gerhard; Rio, Marie-helene; Rommen, Bjorn; Shutler, Jamie D.; Suess, Martin; Tsamados, Michel; Ubelmann, Clement; Van Sebille, Erik; Van Den Oever, Martin; Stammer, Detlef.
The Sea surface KInematics Multiscale monitoring (SKIM) satellite mission is designed to explore ocean surface current and waves. This includes tropical currents, notably the poorly known patterns of divergence and their impact on the ocean heat budget, and monitoring of the emerging Arctic up to 82.5°N. SKIM will also make unprecedented direct measurements of strong currents, from boundary currents to the Antarctic circumpolar current, and their interaction with ocean waves with expected impacts on air-sea fluxes and extreme waves. For the first time, SKIM will directly measure the ocean surface current vector from space. The main instrument on SKIM is a Ka-band conically scanning, multi-beam Doppler radar altimeter/wave scatterometer that includes a...
Tipo: Text Palavras-chave: Ocean current; Tropics; Arctic; Doppler; Altimetry; Sea state; Remote sensing; Ocean waves.
Ano: 2019 URL: https://archimer.ifremer.fr/doc/00498/60964/64372.pdf
Imagem não selecionada

Imprime registro no formato completo
The physical oceanography of the transport of floating marine debris ArchiMer
Van Sebille, Erik; Aliani, Stefano; Law, Kara Lavender; Maximenko, Nikolai; Alsina, José M; Bagaev, Andrei; Bergmann, Melanie; Chapron, Bertrand; Chubarenko, Irina; Cózar, Andrés; Delandmeter, Philippe; Egger, Matthias; Fox-kemper, Baylor; Garaba, Shungudzemwoyo P; Goddijn-murphy, Lonneke; Hardesty, Britta Denise; Hoffman, Matthew J; Isobe, Atsuhiko; Jongedijk, Cleo E; Kaandorp, Mikael L A; Khatmullina, Liliya; Koelmans, Albert A; Kukulka, Tobias; Laufkötter, Charlotte; Lebreton, Laurent; Lobelle, Delphine; Maes, Christophe; Martinez-vicente, Victor; Morales Maqueda, Miguel Angel; Poulain-zarcos, Marie; Rodríguez, Ernesto; Ryan, Peter G; Shanks, Alan L; Shim, Won Joon; Suaria, Giuseppe; Thiel, Martin; Van Den Bremer, Ton S; Wichmann, David.
Marine plastic debris floating on the ocean surface is a major environmental problem. However, its distribution in the ocean is poorly mapped, and most of the plastic waste estimated to have entered the ocean from land is unaccounted for. Better understanding of how plastic debris is transported from coastal and marine sources is crucial to quantify and close the global inventory of marine plastics, which in turn represents critical information for mitigation or policy strategies. At the same time, plastic is a unique tracer that provides an opportunity to learn more about the physics and dynamics of our ocean across multiple scales, from the Ekman convergence in basin-scale gyres to individual waves in the surfzone. In this review, we comprehensively...
Tipo: Text
Ano: 2020 URL: https://archimer.ifremer.fr/doc/00610/72213/71011.pdf
Imagem não selecionada

Imprime registro no formato completo
The quest for seafloor macrolitter: a critical review of background knowledge, current methods and future prospects ArchiMer
Canals, Miquel; Pham, Christopher K.; Bergmann, Melanie; Gutow, Lars; Hanke, Georg; Van Sebille, Erik; Angiolillo, Michela; Buhl-mortensen, Lene; Cau, Alessando; Ioakeimidis, Christos; Kammann, Ulrike; Lundsten, Lonny; Papatheodorou, George; Purser, Autun; Sanchez-vidal, Anna; Schulz, Marcus; Vinci, Matteo; Chiba, Sanae; Galgani, Francois; Langenkämper, Daniel; Möller, Tiia; Nattkemper, Tim W.; Ruiz, Marta; Suikkanen, Sanna; Woodall, Lucy; Fakiris, Elias; Molina Jack, Maria Eugenia; Giorgetti, Alessandra.
The seafloor covers some 70% of the Earth's surface and has been recognized as a major sink for marine litter. Still, litter on the seafloor is the least investigated fraction of marine litter, which is not surprising as most of it lies in the deep sea, i.e. the least explored ecosystem. Although marine litter is considered a major threat for the oceans, monitoring frameworks are still being set up. This paper reviews current knowledge and methods, identifies existing needs, and points to future developments that are required to address the estimation of seafloor macrolitter. It provides background knowledge and conveys the views and thoughts of scientific experts on seafloor marine litter offering a review of monitoring and ocean modeling techniques....
Tipo: Text Palavras-chave: Seafloor; Marine litter; Trawl surveys; Visual surveys; Deep sea; Modelling; Data harmonisation.
Ano: 2021 URL: https://archimer.ifremer.fr/doc/00657/76947/78156.pdf
Imagem não selecionada

Imprime registro no formato completo
Toward the Integrated Marine Debris Observing System ArchiMer
Maximenko, Nikolai; Corradi, Paolo; Law, Kara Lavender; Van Sebille, Erik; Garaba, Shungudzemwoyo P.; Lampitt, Richard Stephen; Galgani, Francois; Martinez-vicente, Victor; Goddijn-murphy, Lonneke; Veiga, Joana Mira; Thompson, Richard C.; Maes, Christophe; Moller, Delwyn; Löscher, Carolin Regina; Addamo, Anna Maria; Lamson, Megan R.; Centurioni, Luca R.; Posth, Nicole R.; Lumpkin, Rick; Vinci, Matteo; Martins, Ana Maria; Pieper, Catharina Diogo; Isobe, Atsuhiko; Hanke, Georg; Edwards, Margo; Chubarenko, Irina P.; Rodriguez, Ernesto; Aliani, Stefano; Arias, Manuel; Asner, Gregory P.; Brosich, Alberto; Carlton, James T.; Chao, Yi; Cook, Anna-marie; Cundy, Andrew B.; Galloway, Tamara S.; Giorgetti, Alessandra; Goni, Gustavo Jorge; Guichoux, Yann; Haram, Linsey E.; Hardesty, Britta Denise; Holdsworth, Neil; Lebreton, Laurent; Leslie, Heather A.; Macadam-somer, Ilan; Mace, Thomas; Manuel, Mark; Marsh, Robert; Martinez, Elodie; Mayor, Daniel J.; Le Moigne, Morgan; Molina Jack, Maria Eugenia; Mowlem, Matt Charles; Obbard, Rachel W.; Pabortsava, Katsiaryna; Robberson, Bill; Rotaru, Amelia-elena; Ruiz, Gregory M.; Spedicato, Maria Teresa; Thiel, Martin; Turra, Alexander; Wilcox, Chris.
Plastics and other artificial materials pose new risks to the health of the ocean. Anthropogenic debris travels across large distances and is ubiquitous in the water and on shorelines, yet, observations of its sources, composition, pathways, and distributions in the ocean are very sparse and inaccurate. Total amounts of plastics and other man-made debris in the ocean and on the shore, temporal trends in these amounts under exponentially increasing production, as well as degradation processes, vertical fluxes, and time scales are largely unknown. Present ocean circulation models are not able to accurately simulate drift of debris because of its complex hydrodynamics. In this paper we discuss the structure of the future integrated marine debris observing...
Tipo: Text Palavras-chave: Plastics; Marine debris; Sensor development; Observing network; Ecosystemstressors; Maritime safety.
Ano: 2019 URL: https://archimer.ifremer.fr/doc/00511/62272/66477.pdf
Registros recuperados: 10
Primeira ... 1 ... Última
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional