|
|
|
Registros recuperados: 13 | |
|
|
Pfeil, B.; Olsen, A.; Bakker, D. C. E.; Hankin, S.; Koyuk, H.; Kozyr, A.; Malczyk, J.; Manke, A.; Metzl, N.; Sabine, C. L.; Akl, J.; Alin, S. R.; Bates, N.; Bellerby, R. G. J.; Borges, A.; Boutin, J.; Brown, P. J.; Cai, W. -j.; Chavez, F. P.; Chen, A.; Cosca, C.; Fassbender, A. J.; Feely, R. A.; Gonzalez-davila, M.; Goyet, C.; Hales, B.; Hardman-mountford, N.; Heinze, C.; Hood, M.; Hoppema, M.; Hunt, C. W.; Hydes, D.; Ishii, M.; Johannessen, T.; Jones, S. D.; Key, R. M.; Koertzinger, A.; Landschuetzer, P.; Lauvset, S. K.; Lefevre, N.; Lenton, A.; Lourantou, A.; Merlivat, L.; Midorikawa, T.; Mintrop, L.; Miyazaki, C.; Murata, A.; Nakadate, A.; Nakano, Y.; Nakaoka, S.; Nojiri, Y.; Omar, A. M.; Padin, X. A.; Park, G. -h.; Paterson, K.; Perez, Fiz F; Pierrot, D.; Poisson, A.; Rios, A. F.; Santana-casiano, J. M.; Salisbury, J.; Sarma, V. V. S. S.; Schlitzer, R.; Schneider, B.; Schuster, U.; Sieger, R.; Skjelvan, I.; Steinhoff, T.; Suzuki, T.; Takahashi, T.; Tedesco, K.; Telszewski, M.; Thomas, H.; Tilbrook, B.; Tjiputra, J.; Vandemark, D.; Veness, T.; Wanninkhof, R.; Watson, A. J.; Weiss, R.; Wong, C. S.; Yoshikawa-inoue, H.. |
A well-documented, publicly available, global data set of surface ocean carbon dioxide (CO2) parameters has been called for by international groups for nearly two decades. The Surface Ocean CO2 Atlas (SOCAT) project was initiated by the international marine carbon science community in 2007 with the aim of providing a comprehensive, publicly available, regularly updated, global data set of marine surface CO2, which had been subject to quality control (QC). Many additional CO2 data, not yet made public via the Carbon Dioxide Information Analysis Center (CDIAC), were retrieved from data originators, public websites and other data centres. All data were put in a uniform format following a strict protocol. Quality control was carried out according to clearly... |
Tipo: Text |
|
Ano: 2013 |
URL: https://archimer.ifremer.fr/doc/00383/49450/49923.pdf |
| |
|
|
Ishii, M.; Feely, R. A.; Rodgers, K. B.; Park, G. -h.; Wanninkhof, R.; Sasano, D.; Sugimoto, H.; Cosca, C. E.; Nakaoka, S.; Telszewski, M.; Nojiri, Y.; Fletcher, S. E. Mikaloff; Niwa, Y.; Patra, P. K.; Valsala, V.; Nakano, H.; Lima, I.; Doney, S. C.; Buitenhuis, E. T.; Aumont, Olivier; Dunne, J. P.; Lenton, A.; Takahashi, T.. |
Air-sea CO2 fluxes over the Pacific Ocean are known to be characterized by coherent large-scale structures that reflect not only ocean subduction and upwelling patterns, but also the combined effects of wind-driven gas exchange and biology. On the largest scales, a large net CO2 influx into the extratropics is associated with a robust seasonal cycle, and a large net CO2 efflux from the tropics is associated with substantial interannual variability. In this work, we have synthesized estimates of the net air-sea CO2 flux from a variety of products, drawing upon a variety of approaches in three sub-basins of the Pacific Ocean, i. e., the North Pacific extratropics (18-66 degrees N), the tropical Pacific (18 degrees S-18 degrees N), and the South Pacific... |
Tipo: Text |
|
Ano: 2014 |
URL: http://archimer.ifremer.fr/doc/00192/30320/28789.pdf |
| |
|
|
Schuster, U.; Mckinley, G. A.; Bates, N.; Chevallier, F.; Doney, S. C.; Fay, A. R.; Gonzalez-davila, Melchor; Gruber, N.; Jones, S.; Krijnen, J.; Landschuetzer, P.; Lefevre, N.; Manizza, M.; Mathis, J.; Metzl, N.; Olsen, A.; Rios, A. F.; Roedenbeck, C.; Santana-casiano, J. M.; Takahashi, T.; Wanninkhof, R.; Watson, A. J.. |
The Atlantic and Arctic Oceans are critical components of the global carbon cycle. Here we quantify the net sea-air CO2 flux, for the first time, across different methodologies for consistent time and space scales for the Atlantic and Arctic basins. We present the long-term mean, seasonal cycle, interannual variability and trends in sea-air CO2 flux for the period 1990 to 2009, and assign an uncertainty to each. We use regional cuts from global observations and modeling products, specifically a pCO(2)-based CO2 flux climatology, flux estimates from the inversion of oceanic and atmospheric data, and results from six ocean biogeochemical models. Additionally, we use basin-wide flux estimates from surface ocean pCO(2) observations based on two distinct... |
Tipo: Text |
|
Ano: 2013 |
URL: https://archimer.ifremer.fr/doc/00153/26409/24508.pdf |
| |
|
|
Bakker, D. C. E.; Pfeil, B.; Smith, K.; Hankin, S.; Olsen, A.; Alin, S. R.; Cosca, C.; Harasawa, S.; Kozyr, A.; Nojiri, Y.; O'Brien, K. M.; Schuster, U.; Telszewski, M.; Tilbrook, B.; Wada, C.; Akl, J.; Barbero, L.; Bates, N. R.; Boutin, J.; Bozec, Y.; Cai, W. -j.; Castle, R. D.; Chavez, F. P.; Chen, L.; Chierici, M.; Currie, K.; De Baar, H. J. W.; Evans, W.; Feely, R. A.; Fransson, A.; Gao, Z.; Hales, B.; Hardman-mountford, N. J.; Hoppema, M.; Huang, W. -j.; Hunt, C. W.; Huss, B.; Ichikawa, T.; Johannessen, T.; Jones, E. M.; Jones, S. D.; Jutterstrom, S.; Kitidis, V.; Koertzinger, A.; Landschuetzer, P.; Lauvset, S. K.; Lefevre, N.; Manke, A. B.; Mathis, J. T.; Merlivat, L.; Metzl, N.; Murata, A.; Newberger, T.; Omar, A. M.; Ono, T.; Park, G. -h.; Paterson, K.; Pierrot, D.; Rios, A. F.; Sabine, C. L.; Saito, S.; Salisbury, J.; Sarma, V. V. S. S.; Schlitzer, R.; Sieger, R.; Skjelvan, I.; Steinhoff, T.; Sullivan, K. F.; Sun, H.; Sutton, A. J.; Suzuki, T.; Sweeney, C.; Takahashi, T.; Tjiputra, J.; Tsurushima, N.; Van Heuven, S. M. A. C.; Vandemark, D.; Vlahos, P.; Wallace, D. W. R.; Wanninkhof, R.; Watson, A. J.. |
The Surface Ocean CO2 Atlas (SOCAT), an activity of the international marine carbon research community, provides access to synthesis and gridded fCO(2) (fugacity of carbon dioxide) products for the surface oceans. Version 2 of SOCAT is an update of the previous release (version 1) with more data (increased from 6.3 million to 10.1 million surface water fCO(2) values) and extended data coverage (from 1968-2007 to 1968-2011). The quality control criteria, while identical in both versions, have been applied more strictly in version 2 than in version 1. The SOCAT website (http://www.socat.info/) has links to quality control comments, metadata, individual data set files, and synthesis and gridded data products. Interactive online tools allow visitors to explore... |
Tipo: Text |
|
Ano: 2014 |
URL: https://archimer.ifremer.fr/doc/00291/40260/39418.pdf |
| |
|
|
Williams, N. L.; Juranek, L. W.; Feely, R. A.; Johnson, K. S.; Sarmiento, J. L.; Talley, L. D.; Dickson, A. G.; Gray, A. R.; Wanninkhof, R.; Russell, J. L.; Riser, S. C.; Takeshita, Y.. |
More than 74 biogeochemical profiling floats that measure water column pH, oxygen, nitrate, fluorescence, and backscattering at 10 day intervals have been deployed throughout the Southern Ocean. Calculating the surface ocean partial pressure of carbon dioxide (pCO2sw) from float pH has uncertainty contributions from the pH sensor, the alkalinity estimate, and carbonate system equilibrium constants, resulting in a relative standard uncertainty in pCO2sw of 2.7% (or 11 µatm at pCO2sw of 400 µatm). The calculated pCO2sw from several floats spanning a range of oceanographic regimes are compared to existing climatologies. In some locations, such as the subantarctic zone, the float data closely match the climatologies, but in the polar Antarctic zone... |
Tipo: Text |
|
Ano: 2017 |
URL: https://archimer.ifremer.fr/doc/00383/49462/49946.pdf |
| |
|
|
Rödenbeck, C.; Bakker, D. C. E.; Gruber, N.; Iida, Y.; Jacobson, A. R.; Jones, S.; Landschützer, P.; Metzl, N.; Nakaoka, S.; Olsen, A.; Park, G.-h.; Peylin, P.; Rodgers, K. B.; Sasse, T. P.; Schuster, U.; Shutler, J. D.; Valsala, V.; Wanninkhof, R.; Zeng, J.. |
Using measurements of the surface-ocean CO2 partial pressure (pCO2) and 14 different pCO2 mapping methods recently collated by the Surface Ocean pCO2 Mapping intercomparison (SOCOM) initiative, variations in regional and global sea–air CO2 fluxes have been investigated. Though the available mapping methods use widely different approaches, we find relatively consistent estimates of regional pCO2 seasonality, in line with previous estimates. In terms of interannual variability (IAV), all mapping methods estimate the largest variations to occur in the Eastern equatorial Pacific. Despite considerable spead in the detailed variations, mapping methods with closer match to the data also tend to be more consistent with each other. Encouragingly, this includes... |
Tipo: Text |
|
Ano: 2015 |
URL: https://archimer.ifremer.fr/doc/00293/40407/38967.pdf |
| |
|
|
Le Quere, C.; Peters, G. P.; Andres, R. J.; Andrew, R. M.; Boden, T. A.; Ciais, P.; Friedlingstein, P.; Houghton, R. A.; Marland, G.; Moriarty, R.; Sitch, S.; Tans, P.; Arneth, A.; Arvanitis, A.; Bakker, D. C. E.; Bopp, L.; Canadell, J. G.; Chini, L. P.; Doney, S. C.; Harper, A.; Harris, I.; House, J. I.; Jain, A. K.; Jones, S. D.; Kato, E.; Keeling, R. F.; Klein Goldewijk, K.; Koertzinger, A.; Koven, C.; Lefevre, N.; Maignan, F.; Omar, A.; Ono, T.; Park, G. H.; Pfeil, B.; Poulter, B.; Raupach, M. R.; Regnier, P.; Roedenbeck, C.; Saito, S.; Schwinger, J.; Segschneider, J.; Stocker, B. D.; Takahashi, T.; Tilbrook, B.; Van Heuven, S.; Viovy, N.; Wanninkhof, R.; Wiltshire, A.; Zaehle, S.. |
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil-fuel combustion and cement... |
Tipo: Text |
|
Ano: 2014 |
URL: https://archimer.ifremer.fr/doc/00291/40261/38627.pdf |
| |
|
|
Le Quere, C.; Moriarty, R.; Andrew, R. M.; Peters, G. P.; Ciais, P.; Friedlingstein, P.; Jones, S. D.; Sitch, S.; Tans, P.; Arneth, A.; Boden, T. A.; Bopp, L.; Bozec, Y.; Canadell, J. G.; Chini, L. P.; Chevallier, F.; Cosca, C. E.; Harris, I.; Hoppema, M.; Houghton, R. A.; House, J. I.; Jain, A. K.; Johannessen, T.; Kato, E.; Keeling, R. F.; Kitidis, V.; Klein Goldewijk, K.; Koven, C.; Landa, C. S.; Landschuetzer, P.; Lenton, A.; Lima, I. D.; Marland, G.; Mathis, J. T.; Metzl, N.; Nojiri, Y.; Olsen, A.; Ono, T.; Peng, S.; Peters, W.; Pfeil, B.; Poulter, B.; Raupach, M. R.; Regnier, P.; Roedenbeck, C.; Saito, S.; Salisbury, J. E.; Schuster, U.; Schwinger, J.; Seferian, R.; Segschneider, J.; Steinhoff, T.; Stocker, B. D.; Sutton, A. J.; Takahashi, T.; Tilbrook, B.; Van Der Werf, G. R.; Viovy, N.; Wang, Y. -p.; Wanninkhof, R.; Wiltshire, A.; Zeng, N.. |
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuel combustion and cement... |
Tipo: Text |
|
Ano: 2015 |
URL: https://archimer.ifremer.fr/doc/00291/40251/38629.pdf |
| |
|
|
Wanninkhof, R.; Park, G. -h.; Takahashi, T.; Sweeney, C.; Feely, R.; Nojiri, Y.; Gruber, N.; Doney, S. C.; Mckinley, G. A.; Lenton, A.; Le Quere, C.; Heinze, C.; Schwinger, J.; Graven, H.; Khatiwala, S.. |
Estimates of the anthropogenic global-integrated sea-air carbon dioxide (CO2) flux from 1990 to 2009, based on different models and measurements, range from –1.4 to –2.6 Pg C yr–1. The median values of anthropogenic CO2 for each method show better agreement and are: −1.9 for Pg C yr−1 for numerical ocean general circulation hind cast models (OGCMs) with parameterized biogeochemistry; –2.1 Pg C yr–1 for atmospheric inverse models; –1.9 Pg C yr–1 for global atmospheric constraints based on O2 / N2 ratios for 1990–2000; and –2.4 Pg C yr–1 for oceanic inverse models. An updated estimate of this anthropogenic CO2 flux based on a climatology of sea-air partial pressure of CO2 differences (ΔpCO2) (Takahashi et al., 2009) and a bulk formulation of gas transfer... |
Tipo: Text |
|
Ano: 2013 |
URL: https://archimer.ifremer.fr/doc/00141/25179/23285.pdf |
| |
|
|
Arndt, D. S.; Blunden, J.; Dunn, R. J. H.; Stanitski, D. M.; Gobron, N.; Willett, K. M.; Sanchez-lugo, A.; Berrisford, P.; Morice, C.; Nicolas, Jp; Carrea, L.; Woolway, R. I.; Merchant, C. J.; Dokulil, M. T.; De Eyto, E.; Degasperi, C. L.; Korhonen, J.; Marszelewski, W.; May, L.; Paterson, A. M.; Rusak, J. A.; Schladow, S. G.; Schmid, M.; Verburg, P.; Watanabe, S.; Weyhenmeyer, G. A.; King, A. D.; Donat, M. G.; Christy, J. R.; Po-chedley, S.; Mears, C. R.; Haimberger, L.; Covey, C.; Randel, W.; Noetzli, J.; Biskaborn, B. K.; Christiansen, H. H.; Isaksen, K.; Schoeneich, P.; Smith, S.; Vieira, G.; Zhao, L.; Streletskiy, D. A.; Robinson, D. A.; Pelto, M.; Berry, D. I.; Bosilovich, M. G.; Simmons, A. J.; Mears, C.; Ho, S. P.; Bock, O.; Zhou, X.; Nicolas, J; Vose, R. S.; Adler, R.; Gu, G.; Becker, A.; Yin, X; Tye, M. R.; Blenkinsop, S.; Bosilovich, M. G.; Durre, I.; Ziese, M.; Collow, A. B. Marquardt; Rustemeier, E.; Foster, M. J.; Di Girolamo, L.; Frey, R. A.; Heidinger, A. K.; Sun-mack, S.; Phillips, C.; Menzel, W. P.; Stengel, M.; Zhao, G.; Kim, H.; Rodell, M.; Li, B.; Famiglietti, J. S.; Scanlon, T.; Van Der Schalie, R.; Preimesberger, W.; Reimer, C.; Hahn, S.; Gruber, A.; Kidd, R.; De Jeu, R. A. M.; Dorigo, W. A.; Barichivich, J.; Osborn, T. J.; Harris, I.; Van Der Schrier, G.; Jones, P. D.; Miralles, D. G.; Martens, B.; Beck, H. E.; Dolman, A. J.; Jimenez, C.; Mccabe, M. F.; Wood, E. F.; Allan, R.; Azorin-molina, C.; Mears, C. A.; Mcvicar, T. R.; Mayer, M.; Schenzinger, V.; Hersbach, H.; Stackhouse, P. W., Jr.; Wong, T.; Kratz, D. P.; Sawaengphokhai, P.; Wilber, A. C.; Gupta, S. K.; Loeb, N. G.; Dlugokencky, E. J.; Hall, B. D.; Montzka, S. A.; Dutton, G.; Muhle, J.; Elkins, J. W.; Miller, Br; Remy, S.; Bellouin, N.; Kipling, Z.; Ades, M.; Benedetti, A.; Boucher, O.; Weber, M.; Steinbrecht, W.; Arosio, C.; Van Der A, R.; Frith, S. M.; Anderson, J.; Coldewey-egbers, M.; Davis, S.; Degenstein, D.; Fioletov, V. E.; Froidevaux, L.; Hubert, D.; Long, C. S.; Loyola, D.; Rozanov, A.; Roth, C.; Sofieva, V.; Tourpali, K.; Wang, R.; Wild, J. D.; Davis, S. M.; Rosenlof, K. H.; Hurst, D. F.; Selkirk, H. B.; Vomel, H.; Ziemke, J. R.; Cooper, O. R.; Flemming, J.; Inness, A.; Pinty, B.; Kaiser, J. W.; Van Der Werf, G. R.; Hemming, D. L.; Garforth, J.; Park, T.; Richardson, A. D.; Rutishauser, T.; Sparks, T. H.; Thackeray, S. J.; Myneni, R.; Lumpkin, R.; Huang, B.; Kennedy, J.; Xue, Y.; Zhang, H. -m.; Hu, C.; Wang, M.; Johnson, G. C.; Lyman, J. M.; Boyer, T.; Cheng, L.; Domingues, C. M.; Gilson, J.; Ishii, M.; Killick, R. E.; Monselesan, D.; Purkey, S. G.; Wijffels, S. E.; Locarnini, R.; Yu, L.; Jin, X.; Stackhouse, P. W.; Kato, S.; Weller, R. A.; Thompson, P. R.; Widlansky, M. J.; Leuliette, E.; Sweet, W.; Chambers, D. P.; Hamlington, B. D.; Jevrejeva, S.; Marra, J. J.; Merrifield, M. A.; Mitchum, G. T.; Nerem, R. S.; Kelble, C.; Karnauskas, M.; Hubbard, K.; Goni, G.; Streeter, C.; Lumpkin, R.; Dohan, K.; Franz, B. A.; Cetinic, I.; Karakoylu, E. M.; Siegel, D. A.; Westberry, T. K.; Feely, R. A.; Wanninkhof, R.; Carter, B. R.; Landschutzer, P.; Sutton, A. J.; Cosca, C.; Trinanes, J. A.; Baxter, S.; Schreck, C.; Bell, G. D.; Mullan, A. B.; Pezza, A. B.; Coelho, C. A. S.; Wang, B.; He, Q.; Diamond, H. J.; Schreck, C. J.; Bell, G. D.; Blake, E. S.; Landsea, C. W.; Wang, H.; Goldenberg, S. B.; Pasch, R. J.; Klotzbach, P. J.; Kruk, M. C.; Schreck, C. J.; Camargo, S. J.; Trewin, B. C.; Pearce, P. R.; Lorrey, A. M.; Domingues, R.; Goni, G. J.; Knaff, J. A.; Lin, I. -i.; Bringas, F.; Richter-menge, J.; Osborne, E.; Druckenmiller, M.; Jeffries, M. O.; Overland, J. E.; Hanna, E.; Hanssen-bauer, I.; Kim, S. -j.; Walsh, J. E.; Wang, M.; Bhatt, U. S.; Timmermans, M. -l.; Ladd, C.; Perovich, D.; Meier, W.; Tschudi, M.; Farrell, S.; Hendricks, S.; Gerland, S.; Haas, C.; Krumpen, T.; Polashenski, C.; Ricker, R; Webster, M.; Stabeno, P. J.; Tedesco, M.; Box, J. E.; Cappelen, J.; Fausto, R. S.; Fettweis, X.; Andersen, J. K.; Mote, T.; Smeets, C. J. P. P.; Van As, D.; Van De Wal, R. S. W.; Romanovsky, V. E.; Smith, S. L.; Isaksen, K.; Shiklomanov, N. I.; Streletskiy, D. A.; Kholodov, A. L.; Christiansen, H. H.; Drozdov, D. S.; Malkova, G. V.; Marchenko, S. S.; Jella, K. B.; Mudryk, L.; Brown, R.; Derksen, C.; Luojus, K.; Decharme, B.; Holmes, R. M.; Shiklomanov, A. I.; Suslova, A.; Tretiakov, M.; Mcclelland, J. W.; Spencer, R. G. M.; Tank, S. E.; Epstein, H.; Bhatt, U.; Raynolds, M.; Walker, D.; Forbes, B.; Phoenix, G.; Bjerke, J.; Tommervik, H.; Karlsen, S. -r.; Myneni, R.; Park, T.; Goetz, S.; Jia, G.; Bernhard, G. H.; Fioletov, V. E.; Grooss, J. -u.; Ialongo, I.; Johnsen, B.; Lakkala, K.; Manney, G. L.; Mueller, R.; Scambos, T.; Stammerjohn, S.; Clem, K. R.; Barreira, S.; Fogt, R. L.; Colwell, S.; Keller, L. M.; Lazzara, M. A.; Reid, P.; Massom, R. A.; Lieser, J. L.; Meijers, A.; Sallee, J. -b.; Grey, A.; Johnson, K.; Arrigo, K.; Swart, S.; King, B.; Meredith, M.; Mazloff, M.; Scardilli, A.; Claus, F.; Shuman, C. A.; Kramarova, N.; Newman, P. A.; Nash, E. R.; Strahan, S. E.; Long, C. S.; Johnson, B.; Pitts, M.; Santee, M. L.; Petropavlovskikh, I.; Braathen, G. O.; Coy, L.; De Laat, J.; Bissolli, P.; Ganter, C.; Li, T.; Mekonnen, A.; Sanchez-lugo, A.; Gleason, K.; Smith, A.; Fenimore, C.; Heim, R. R., Jr.; Nauslar, N. J.; Brown, T. J.; Mcevoy, D. J.; Lareau, N. P.; Amador, J. A.; Hidalgo, H. G.; Alfaro, E. J.; Calderon, B.; Mora, N.; Stephenson, T. S.; Taylor, M. A.; Trotman, A. R.; Van Meerbeeck, C. J.; Campbell, J. D.; Brown, A.; Spence, J.; Martinez, R.; Diaz, E.; Marin, D.; Hernandez, R.; Caceres, L.; Zambrano, E.; Nieto, J.; Marengo, J. A.; Espinoza, J. C.; Alves, L. M.; Ronchail, J.; Lavado-casimiro, J. W.; Ramos, I.; Davila, C.; Ramos, A. M.; Diniz, F. A.; Aliaga-nestares, V.; Castro, A. Y.; Stella, J. L.; Aldeco, L. S.; Diaz, D. A. Campos; Misevicius, N.; Mekonnen, A.; Kabidi, K.; Sayouri, A.; Elkharrim, M.; Mostafa, A. E.; Hagos, S.; Feng, Z.; Ijampy, J. A.; Sima, F.; Francis, S. D.; Tsidu, G. Mengistu; Kruger, A. C.; Mcbride, C.; Jumaux, G.; Dhurmea, K. R.; Belmont, M.; Rakotoarimalala, C. L.; Labbe, L.; Rosner, B.; Benedict, I.; Van Heerwaarden, C.; Weerts, A.; Hazeleger, W.; Bissolli, P.; Trachte, K.; Zhu, Z.; Zhang, P.; Lee, T. C.; Ripaldi, A.; Mochizuki, Y.; Lim, J. -y; Oyunjargal, L.; Timbal, B.; Srivastava, A. K.; Revadekar, J. V.; Rajeevan, M.; Shimpo, A.; Khoshkam, M.; Kazemi, A. Fazl; Zeyaeyan, S.; Ganter, C.; Lander, M. A.; Mcgree, S.; Tobin, S.; Bettio, L.. |
Tipo: Text |
|
Ano: 2019 |
URL: https://archimer.ifremer.fr/doc/00677/78862/81179.pdf |
| |
|
|
Rodgers, K. B.; Aumont, Olivier; Fletcher, S. E. Mikaloff; Plancherel, Y.; Bopp, L.; De Boyer Montegut, Clement; Iudicone, D.; Keeling, R. F.; Madec, Gerard; Wanninkhof, R.. |
Here we test the hypothesis that winds have an important role in determining the rate of exchange of CO2 between the atmosphere and ocean through wind stirring over the Southern Ocean. This is tested with a sensitivity study using an ad hoc parameterization of wind stirring in an ocean carbon cycle model, where the objective is to identify the way in which perturbations to the vertical density structure of the planetary boundary in the ocean impacts the carbon cycle and ocean biogeochemistry. Wind stirring leads to reduced uptake of CO2 by the Southern Ocean over the period 2000-2006, with a relative reduction with wind stirring on the order of 0.9 Pg C yr(-1) over the region south of 45 degrees S. This impacts not only the mean carbon uptake, but also the... |
Tipo: Text |
|
Ano: 2014 |
URL: http://archimer.ifremer.fr/doc/00211/32236/30684.pdf |
| |
|
|
Wanninkhof, R.; Trinanes, J.. |
An increase in global wind speeds over time is affecting the global uptake of CO2 by the ocean. We determine the impact of changing winds on gas transfer and CO2 uptake by using the recently updated, global high-resolution, cross-calibrated multiplatform wind product (CCMP-V2) and a fixed monthly pCO(2) climatology. In particular, we assess global changes in the context of regional wind speed changes that are attributed to large-scale climate reorganizations. The impact of wind on global CO2 gas fluxes as determined by the bulk formula is dependent on several factors, including the functionality of the gas exchange-wind speed relationship and the regional and seasonal differences in the air-water partial pressure of CO2 gradient (pCO(2)). The latter also... |
Tipo: Text |
Palavras-chave: Ocean carbon cycle; Air-sea CO2 fluxes; Wind speed. |
Ano: 2017 |
URL: https://archimer.ifremer.fr/doc/00661/77324/78784.pdf |
| |
|
|
Foltz, G. R.; Brandt, P.; Richter, I.; Rodríguez-fonseca, B.; Hernandez, F.; Dengler, M.; Rodrigues, R. R.; Schmidt, J. O.; Yu, L.; Lefevre, N.; Da Cunha, L. Cotrim; Mcphaden, M. J.; Araujo, M.; Karstensen, J.; Hahn, J.; Martín-rey, M.; Patricola, C. M.; Poli, P.; Zuidema, P.; Hummels, R.; Perez, Rc; Hatje, V.; Lübbecke, J. F.; Polo, I.; Lumpkin, R.; Bourlès, Bernard; Asuquo, F. E.; Lehodey, P.; Conchon, A.; Chang, P.; Dandin, P.; Schmid, C.; Sutton, A.; Giordani, H.; Xue, Y.; Illig, S.; Losada, T.; Grodsky, S. A.; Gasparin, F.; Lee, T.; Mohino, E.; Nobre, P.; Wanninkhof, R.; Keenlyside, N.; Garcon, V.; Sánchez-gómez, E.; Nnamchi, H. C.; Drévillon, M.; Storto, A.; Remy, E.; Lazar, A.; Speich, S.; Goes, M.; Dorrington, T.; Johns, W. E.; Moum, J. N.; Robinson, C.; Perruche, Coralie; De Souza, R. B.; Gaye, A. T.; López-parages, J.; Monerie, P.-a.; Castellanos, P.; Benson, N. U.; Hounkonnou, M. N.; Duhá, J. Trotte; Laxenaire, R.; Reul, Nicolas. |
The tropical Atlantic is home to multiple coupled climate variations covering a wide range of timescales and impacting societally relevant phenomena such as continental rainfall, Atlantic hurricane activity, oceanic biological productivity, and atmospheric circulation in the equatorial Pacific. The tropical Atlantic also connects the southern and northern branches of the Atlantic meridional overturning circulation and receives freshwater input from some of the world’s largest rivers. To address these diverse, unique, and interconnected research challenges, a rich network of ocean observations has developed, building on the backbone of the Prediction and Research Moored Array in the Tropical Atlantic (PIRATA). This network has evolved naturally over time... |
Tipo: Text |
Palavras-chave: Tropical Atlantic Ocean; Observing system; Weather; Climate; Hurricanes; Biogeochemistry; Ecosystems; Coupled model bias. |
Ano: 2019 |
URL: https://archimer.ifremer.fr/doc/00494/60612/64096.pdf |
| |
Registros recuperados: 13 | |
|
|
|