Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Ordenar por: 

RelevânciaAutorTítuloAnoImprime registros no formato resumido
Registros recuperados: 2
Primeira ... 1 ... Última
Imagem não selecionada

Imprime registro no formato completo
Energy use reduction and input productivity growth in Australian industries AgEcon
Syed, Arif.
A report by the Prime Minister’s Task Group on Energy Efficiency (July 2010) emphasised the need for improved energy efficiency as a response to climate change to ensure a reduction in greenhouse gas emissions from energy consumption in Australia. However, empirical evidence on energy efficiency and its effect on energy use in Australia is scarce. Given this, estimates of the magnitude of the autonomous energy efficiency improvement parameter and the bias in technological change in Australia’s agricultural and industrial sectors have been made, using statistical and econometric techniques. The strong interaction prevailing between capital use and energy productivity in many industries indicates that energy use efficiency may be augmented by optimising...
Tipo: Conference Paper or Presentation Palavras-chave: Energy efficiency; Energy demand; Energy policy; Climate change.; Resource /Energy Economics and Policy.
Ano: 2011 URL: http://purl.umn.edu/100715
Imagem não selecionada

Imprime registro no formato completo
Principal Component Analysis of Crop Yield Response to Climate Change AgEcon
Cai, Ruohong; Bergstrom, John C.; Mullen, Jeffrey D.; Wetzstein, Michael E.; Shurley, W. Donald.
The objective of this study is to compare the effects of climate change on crop yields across different regions. A Principal Component Regression (PCR) model is developed to estimate the historical relationships between weather and crop yields for corn, soybeans, cotton, and peanuts for several northern and southern U.S. states. Climate change projection data from three climate models are applied to the estimated PCR model to forecast crop yield response. Instead of directly using weather variables as predictor variables, the PCR model uses weather indices transformed from original weather variables by the Principal Component Analysis (PCA) approach. A climate change impact index (CCII) is developed to compare climate change effects across different...
Tipo: Working or Discussion Paper Palavras-chave: Principal component regression; Crop yield response; Climate change.; Crop Production/Industries.
Ano: 2011 URL: http://purl.umn.edu/103947
Registros recuperados: 2
Primeira ... 1 ... Última
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional