Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Ordenar por: 

RelevânciaAutorTítuloAnoImprime registros no formato resumido
Registros recuperados: 2
Primeira ... 1 ... Última
Imagem não selecionada

Imprime registro no formato completo
A neural qualitative approach for automatic territorial zoning. Repositório Alice
MACIEL, R. J. S.; SILVA, M. A. S. da; MATOS, L. N.; DOMPIERI, M. H. G..
This article presents the application of the Self-Organizing Maps (SOM) as an exploratory tool for automatic territorial zoning by combining the handle of categorical data and the other for automatic clustering. The SOM online learning algorithm had been chosen to treat categorical data by using the dot product method and the Sorense-Dice binary similarity coefficient. To automatically perform a spatial clustering, an adaptation of the automatic clustering Costa-Netto algorithm had been also proposed. The correspondence analysis had been used to examine the profiles of each homogeneous zones. To explore the approach it has been performed the territorial zoning of the Alto Taquari River Basin, Brazil, using as input data a set of thematic maps. The results...
Tipo: Anais e Proceedings de eventos Palavras-chave: Bacia do Alto Taquari; Zoneamento; Análise espacial; Self-organizing maps; Exploratory spatial analysis; Similarity coefficients; Alto Taquari River Basin; Correspondence analysis; Zoning; Thematic maps.
Ano: 2017 URL: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1085890
Imagem não selecionada

Imprime registro no formato completo
Automatic environmental zoning with self-organizing maps. Repositório Alice
SILVA, M. A. S. da; MACIEL, R. J. S.; MATOS, L. N.; DOMPIERI, M. H. G..
This article presents the application of the Self-Organizing Maps (SOM) as an exploratory tool for automatic environmental zoning by combining the handle of categorical data and the other for automatic clustering. The SOM online learning algorithm had been chosen to treat categorical data by using the dot product method and the Sorense-Dice binary similarity coefficient. To automatically perform a spatial clustering, an adaptation of the automatic clustering Costa-Netto algorithm had been also proposed. The correspondence analysis had been used to examine the profiles of each homogeneous zones. To explore the approach it has been performed the environmental zoning of the Alto Taquari River Basin, Brazil, using as input data a set of thematic maps. The...
Tipo: Artigo de periódico Palavras-chave: Artificial neural network; Exploratory spatial analysis; Similarity coefficients; Alto Taquari river; Correspondence analysis.
Ano: 2018 URL: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1103941
Registros recuperados: 2
Primeira ... 1 ... Última
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional