Biological systems are complex dynamical systems whose relationships with environment have strong implications on their regulation and survival. From the interactions between plant and environment can emerge a quite complex network of plant responses rarely observed through classical analytical approaches. The objective of this current study was to test the hypothesis that photosynthetic responses of different tree species to increasing irradiance are related to changes in network connectances of gas exchange and photochemical apparatus, and alterations in plant autonomy in relation to the environment. The heat dissipative capacity through daily changes in leaf temperature was also evaluated. It indicated that the early successional species (Citharexylum...
This study evaluated the photosynthetic responses of seven tropical trees of different successional groups under contrasting irradiance conditions, taking into account changes in gas exchange and chlorophyll a fluorescence. Although early successional species have shown higher values of CO2 assimilation (A) and transpiration (E), there was not a defined pattern of the daily gas exchange responses to high irradiance (FSL) among evaluated species. Cariniana legalis (Mart.) Kuntze (late secondary) and Astronium graveolens Jacq. (early secondary) exhibited larger reductions in daily-integrated CO2 assimilation (DIA) when transferred from medium light (ML) to FSL. On the other hand, the pioneer species Guazuma ulmifolia Lam. had significant DIA increase when...