Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  Nature Precedings
País:  United Kingdom
Título:  Genome Replikin Count Predicts Increased Infectivity/Lethality of Viruses
Autores:  Samuel Bogoch
Elenore S. Bogoch
Data:  2012-04-03
Ano:  2012
Palavras-chave:  Biotechnology
Chemistry
Genetics & Genomics
Immunology
Microbiology
Bioinformatics
Resumo:  The genomes of all groups of viruses whose sequences are listed on Pubmed, specimens since 1918, analyzed by a software from Bioradar UK Ltd., contain Replikins which range in concentration from a Replikin Count (number of Replikins per 100 amino acids) of less than 1 to 30 (see accompanying communications for higher Counts in tuberculosis, malaria, and cancer, associated with higher lethality). Counts of less than 4.0 were found in ‘resting’ virus states; Counts greater than 4.0, found to be associated with rapid replication, were found invariably to accompany or to predict virus outbreaks, by as much as two years, in viral hosts examined from salmon, to birds, to livestock, to humans. X-ray diffraction showed Replikins to be on the surface of the hemagglutinin gene of influenza and to spread as the Count increased from 3.2 to 10.1, prior to, then during, the 2009 H1N1 influenza pandemic. The degree of lethality of these outbreaks was found to be a function of the statistically significant increase in Replikin Count, particularly in the influenza polymerase gene p B1 or its equivalent in other viruses. Prediction up to two years in advance of the outbreak, and the geographic location of the outbreak, now done in 7/7 trials (see Bogoch, Nature Precedings), has permitted the solid phase synthesis of Replikin vaccines in 7 days, with time to permit manufacture, adequate testing for safety and efficacy, and distribution freeze-dried to all populations. These completely synthetic Replikins vaccines so far have been shown to be effective against Taura Syndrome virus in shrimp, and H5N1 in chickens. Thus for the first time this new technology provides the practical possibility to prevent pandemics rather than just to react to them.
Tipo:  Manuscript
Identificador:  http://precedings.nature.com/documents/7144/version/1

oai:nature.com:10.1038/npre.2012.7144.1

http://dx.doi.org/10.1038/npre.2012.7144.1
Fonte:  Nature Precedings
Direitos:  Creative Commons Attribution 3.0 License
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional