Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  Nature Precedings
País:  United Kingdom
Título:  Comparative semiempirical, ab initio, and DFT study on the thermodynamic properties of linear and branched PFSA/Fs, PFCA/Fs, and perhydroalkyl sulfonic acids, alkanes, and alcohols
Autores:  Sierra Rayne
Kaya Forest
Data:  2009-10-31
Ano:  2009
Palavras-chave:  Chemistry
Earth & Environment
Resumo:  A systematic and comprehensive semiempirical, Hartree-Fock (HF) ab initio, and B3LYP density functional theory (DFT) study was conducted on the relative thermodynamic properties of various linear and branched perfluorinated and perhydrogenated alkyl compounds. The semiempirical AM1, PM3, and PM6 methods all consistently and accurately predict that branched alkyl compounds will generally be more thermodynamically stable than their linear counterparts. In contrast, HF and B3LYP calculations with the 6-31G(d,p), 6-31++G(d,p), and 6-311++G(d,p) basis sets predict that linear isomers will be more stable than branched analogs. These different linear versus branched perfluoroalkyl/perhydroalkyl thermodynamic property trends between semiempirical and ab initio/DFT methods were evident in both gas and aqueous phase calculations. Comparison of experimentally determined thermodynamic properties for several classes of linear and branched alkanes and alcohols with values calculated at the PM6 and B3LYP/6-311++G(d,p) levels of theory supported the well known findings that such DFT and HF approaches incorrectly predict branched alkyl compounds will be less thermodynamically stable than linear isomers. Calculations at the MP2/6-311++G(d,p)//B3LYP/6-311++G(d,p) and M05-2X/6-311++G(d,p) levels of theory on a representative subset of the linear and branched perfluorinated compounds supported the thermodynamic conclusions from the PM6 method. Strong agreement between PM6 estimated thermodynamic properties and available experimental data supports use of this computational method for accurately calculating the well established higher thermodynamic stability of branched alkyl compounds. Branched perfluoroalkyl compounds are thus expected to be more thermodynamically stable than their linear analogs.
Tipo:  Manuscript
Identificador:  http://precedings.nature.com/documents/3928/version/1

oai:nature.com:10101/npre.2009.3928.1

http://hdl.handle.net/10101/npre.2009.3928.1
Fonte:  Nature Precedings
Direitos:  Creative Commons Attribution 3.0 License
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional