Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  OAK
País:  Japan
Título:  Enhancement of abdominal wall defect repair using allogenic platelet-rich plasma with commercial polyester/cotton fabric (Damour) in a canine model
Autores:  Abouelnasr, Khaled
Hamed, Mohamed
Lashen, Samah
El-Adl, Mohamed
Rasha, Eltaysh
Tagawa, Michihito
Data:  2017
Ano:  2017
Palavras-chave:  Abdominal wall defect
Damour
Dog
Platelet-rich plasma
Resumo:  Platelet-rich plasma (PRP) has an important role in musculoskeletal surgery; however, it has been underutilized for accelerating the healing of abdominal wall defects in veterinary practice. Therefore, the aim of this study was to evaluate the use of commercial polyester/cotton fabric (Damour) as a new composite mesh for the repair of experimentally induced abdominal wall defects in canine models, and to investigate the possible role of PRP for improving such repair and reducing allied complications. For this purpose, abdominal wall defects were created in 24 healthy mongrel dogs and then repaired with mesh alone (control group) or mesh and allogenic PRP (PRP group). Dogs were euthanized after 2 or 4 months for gross examination of implantation site, detection of adhesion score and hernia recurrence. Moreover, tissue samples were collected for histological and gene expression analyses for neovascularization, collagen formation and tissue incorporation. Hernia recurrence was not recorded in PRP-treated dogs that also displayed significantly more neovascularization and less severe adhesion to the underlings (1.08 ± 0.51) in comparison to control group (2.08 ± 0.99). Histological and molecular evaluation confirmed the gross findings that collagen deposition, new vessel formation, and overexpression of angiogenic and myofibroplastic genes (COL1α1, COL3α1, VEGF and TGFβ1) were observed more frequently in the PRP group, at both time points. In conclusion, we found that addition of allogenic PRP to Damour mesh enhanced neovessel formation, and increased tissue deposition and incorporation, with subsequent reduction of peritoneal adhesion and recurrence rate. c 2017 The Japanese Society of Veterinary Science.
Idioma:  Inglês
Identificador:  http://ir.obihiro.ac.jp/dspace/handle/10322/4542

info:doi/10.1292/jvms.17-0139
Editor:  Japanese Society of Veterinary Science
Direitos:  This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/)
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional