Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  ArchiMer
País:  France
Título:  Seasonal Pattern of the Biogeochemical Properties of Mangrove Sediments Receiving Shrimp Farm Effluents (New Caledonia)
Autores:  Marchand, Cyril
Molnar, N.
Deborde, Jonathan
Della Patrona, Luc
Meziane, Tarik
Data:  2014-07-03
Ano:  2014
Palavras-chave:  Shrimp farming
Effluents
Mangrove
Sediment biogeochemistry
New Caledonia
Resumo:  Coastal tropical shrimp farming may impact the adjacent ecosystems through the release of large quantities of effluents rich in nutrients. In New Caledonia, mangroves are considered as a natural biofilter to reduce impacts on the surrounding World Heritage listed lagoon. Our main objective was to understand the influence of effluent discharge on the biogeochemistry of mangrove sediments. A monitoring of the physico-chemical parameters of mangrove sediments was carried out during a whole year, including active and non active periods of the farm. The parameters studied were: i) benthic primary production (Chl-a concentrations), ii) physico-chemical parameters of sediments (redox potential, pH, salinity, TOC, TN, TS, δ13C and δ15N), iii) concentrations of dissolved nitrogen, iron and phosphorus. A mangrove developing in the same physiographic conditions, presenting the same zonation, and free of anthropogenic input was used as reference. The concentration of benthic Chl-a measured at sediment surface in the effluent receiving mangrove was twice to three times that measured in the control zone whatever the season. We thus suggest that nutrients inputs significantly increased the phytobenthic production in the effluent receiving mangrove during the whole year, even after the cessation of discharges and because of natural seasonal dynamic of phytobenthos. Although the flow of surface OM was increased, the OM content at depth was not higher than in the control mangrove. However, the contribution of mangrove detritus to the sedimentary organic pool was higher probably as a result of higher density and much greater individual size of the mangrove trees. Unlike the control mangrove sediment, the effluent receiving mangrove sediment was not stratified, redox potential values were high and presence of Fe3+ was detected down to 50 cm depth, probably as a result of a larger root system, allowing a better sediment oxygenation and accentuated OM decomposition processes, and thus limiting ecosystem saturation.
Tipo:  Text
Idioma:  Inglês
Identificador:  https://archimer.ifremer.fr/doc/00251/36253/34801.pdf

DOI:10.4172/2155-9546.1000262

https://archimer.ifremer.fr/doc/00251/36253/
Editor:  OMICS Publishing Group
Formato:  application/pdf
Fonte:  Journal of Aquaculture Research & Development (21559546) (OMICS Publishing Group), 2014-07-03 , Vol. 5 , N. 5 , P. 1-13
Direitos:  2014 Marchand C, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

info:eu-repo/semantics/openAccess

restricted use
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional