Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  ArchiMer
País:  France
Título:  Interactions between microplastics and phytoplankton aggregates : Impact on their respective fates
Autores:  Long, Marc
Moriceau, Brivaela
Gallinari, Morgane
Lambert, Christophe
Huvet, Arnaud
Raffray, Jean
Soudant, Philippe
Data:  2015-10
Ano:  2015
Palavras-chave:  Microplastic sink
Vertical export
Diatom and cryptophyte aggregates
Settling rate
Permeability
Resumo:  Plastic debris are resistant to degradation, and therefore tend to accumulate in marine environment. Nevertheless recent estimations of plastic concentrations at the surface of the ocean were lower than expected leading the communities to seek new sinks. Among the different processes suggested we chose to focus on the transport of microplastics from the surface to deeper layers of the ocean via phytoplankton aggregates that constitute most of the sinking flux. Interactions between microplastics and aggregates were studied by building a new device: the flow-through roller tank that mimics the behaviour of laboratory made aggregates sinking through a dense layer of microplastics. Three types of aggregates formed from two different algae species (the diatom Chaetoceros neogracile, the cryptophyte Rhodomonas salina and a mix) were used as model. With their frustule made of biogenic silica which is denser than the organic matter, diatom aggregates sunk faster than R. salina aggregates. Diatom aggregates were on average bigger and stickier while aggregates from R. salina were smaller and more fragile. With higher concentrations measured in R. salina aggregates, all model-aggregates incorporated and concentrated microplastics, substantially increasing the microplastic sinking rates from tenths to hundreds of metres per day. Our results clearly show that marine aggregates can be an efficient sink for microplastics by influencing their vertical distribution in the water column. Furthermore, despite the high plastic concentrations tested, our study opens new questions regarding the impact of plastics on sedimentation fluxes in oceans. As an effect of microplastic incorporation, the sinking rates of diatom aggregates strongly decreased meanwhile sinking rates of cryptophyte aggregates increased.
Tipo:  Text
Idioma:  Inglês
Identificador:  https://archimer.ifremer.fr/doc/00259/37048/35557.pdf

DOI:10.1016/j.marchem.2015.04.003

https://archimer.ifremer.fr/doc/00259/37048/
Editor:  Elsevier Science Bv
Formato:  application/pdf
Fonte:  Marine Chemistry (0304-4203) (Elsevier Science Bv), 2015-10 , Vol. 175 , P. 39-46
Direitos:  2015 Elsevier B.V. All rights reserved.

info:eu-repo/semantics/openAccess

restricted use
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional