Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  ArchiMer
País:  France
Título:  Long-term surface pCO(2) trends from observations and models
Autores:  Tjiputra, Jerry F.
Olsen, Are
Bopp, Laurent
Lenton, Andrew
Pfeil, Benjamin
Roy, Tilla
Segschneider, Joachim
Totterdell, Ian
Heinze, Christoph
Data:  2014-05-19
Ano:  2014
Palavras-chave:  Surface pCO(2)
Ocean CO2 sinks
Earth system models
CMIP5 projections
Ocean biogeochemistry
Resumo:  We estimate regional long-term surface ocean pCO(2) growth rates using all available underway and bottled biogeochemistry data collected over the past four decades. These observed regional trends are compared with those simulated by five state-of-the-art Earth system models over the historical period. Oceanic pCO(2) growth rates faster than the atmospheric growth rates indicate decreasing atmospheric CO2 uptake, while ocean pCO(2) growth rates slower than the atmospheric growth rates indicate increasing atmospheric CO2 uptake. Aside from the western subpolar North Pacific and the subtropical North Atlantic, our analysis indicates that the current observation-based basin-scale trends may be underestimated, indicating that more observations are needed to determine the trends in these regions. Encouragingly, good agreement between the simulated and observed pCO(2) trends is found when the simulated fields are subsampled with the observational coverage. In agreement with observations, we see that the simulated pCO(2) trends are primarily associated with the increase in surface dissolved inorganic carbon (DIC) associated with atmospheric carbon uptake, and in part by warming of the sea surface. Under the RCP8.5 future scenario, DIC continues to be the dominant driver of pCO(2) trends, with little change in the relative contribution of SST. However, the changes in the hydrological cycle play an increasingly important role. For the contemporary (1970-2011) period, the simulated regional pCO(2) trends are lower than the atmospheric growth rate over 90% of the ocean. However, by year 2100 more than 40% of the surface ocean area has a higher oceanic pCO(2) trend than the atmosphere, implying a reduction in the atmospheric CO2 uptake rate. The fastest pCO(2) growth rates are projected for the subpolar North Atlantic, while the high-latitude Southern Ocean and eastern equatorial Pacific have the weakest growth rates, remaining below the atmospheric pCO(2) growth rate. Our work also highlights the importance and need for a sustained long-term observing strategy to continue monitoring the change in the ocean anthropogenic CO2 sink and to better understand the potential carbon cycle feedbacks to climate that could arise from it.
Tipo:  Text
Idioma:  Inglês
Identificador:  https://archimer.ifremer.fr/doc/00291/40228/38691.pdf

https://archimer.ifremer.fr/doc/00291/40228/38692.pdf

DOI:10.3402/tellusb.v66.23083

https://archimer.ifremer.fr/doc/00291/40228/
Editor:  Co-action Publishing
Relação:  info:eu-repo/grantAgreement/EC/FP7/264879/EU//CARBOCHANGE
Formato:  application/pdf
Fonte:  Tellus Series B-chemical And Physical Meteorology (0280-6509) (Co-action Publishing), 2014-05-19 , Vol. 66 , N. 23083 , P. 1-24
Direitos:  2014 J. F. Tjiputra et al. This is an Open Access article distributed under the terms of the Creative Commons CC-BY 4.0 License (http:// creativecommons.org/licenses/by/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material for any purpose, even commercially, provided the original work is properly cited and states its license

info:eu-repo/semantics/openAccess

restricted use
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional