Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  ArchiMer
País:  France
Título:  Algogroup: Towards a Shared Vision of the Possible Deployment of Algae to Biofuels
Autores:  Montagne, Xavier
Porot, Pierre
Aymard, Caroline
Querleu, Cecile
Bouter, Anne
Lorne, Daphne
Cadoret, Jean-paul
Lombaert-valot, Isabelle
Petillon, Odile
Data:  2013-09
Ano:  2013
Resumo:  A strong interest has been focused from several years on the algae pathway for energy production, especially for transportation fuels called third generation biofuel or G3 biofuel, and mainly from microalgae route, considering it could be a high potential alternative strategy for renewable energy and fuel production. Algae, and especially microalgae, present significant advantages compared with land resources, such as much higher productivity and lack of competition with food applications. Nevertheless, based on current knowledge, the production of an algae biomass for energy remains a difficult target to reach, due to the numerous existing hurdles such as the energetic yield and the economic positioning, without neglecting the environmental and societal aspect. Unlike first generation (G1) and a few second generation biofuel (G2) processes, G3 biofuel processes are far from the industrialization step. In 2010, under the initiative of IFP Energies nouvelles, Airbus, Safran, EADS IW and the "Academie des Technologies", launched a French national study of the potential of the algae sector as resources for the so called G3 biofuel production. This study was called "Algogroup" and led by IFP Energies nouvelles. The objective was to obtain a shared vision of the deployment possibilities. It led to the creation of this Algogroup task force with the previous partners, adding Sofiproteol, INRA(1), IFREMER1, CEVA(1) and the Agrimip pole to combine all available knowledge and determine the responses which could be given to the existing questions. The Algogroup objective was to facilitate vision sharing between participating organisations and industrials on the technical improvements, the probabilities of success, the R&D needs and the development perspectives, while paying close attention to the obstacles which have to be alleviated to improve the positioning of the algae pathway. To reach this target, Algogroup has explored several axes, which enabled a thorough analysis of the potentials and limits of the technology: from the species selection to the harvesting (lipid extraction/recovery), including environmental and economical aspects. This paper focuses on some main aspects of the Algogroup study related to economical positioning and environmental terms, specially Life Cycle Analysis (LCA). A large share of the work was dedicated to microalgae, but since it was also considered important to examine the potential role of macroalgae, a specific analysis was conducted on this aspect. It has enabled the group to issue some recommendations such as a need for an integrated approach, need for tools to run comprehensive technico-economic assessments, including co-products valorisation. Despite the limited amount of reliable information currently available on the algofuel sectors, especially in terms of environmental balance, numerous challenges still remain to be taken up to make these sectors credible and profitable, both technically, economically and environmentally. On the economic aspect the estimated costs for future microalgae biofuels remain in a very broad range from $2/Gal to $7/Gal. There remains great potential to decrease microalgae oil production costs, but this has to be considered very carefully given the large amount of underlying assumptions. Moreover, as yet underlined, microalgae biofuels are not currently being produced at a commercial scale, thus these are only potential scenarios, which will have to be confirmed. And finally, several technologies can be used to produce microalgae oil and location possibilities are proposed. Another key point is that, in a large majority of scenarios, the economic viability of the pathway relies on the valorisation of what one usually calls co-products. Valorisation of co-products is not considered a valid option in the long-term as no market identified today could absorb the quantities associated to a new fuel market. Besides, environmental studies have demonstrated that the energetic balance was not favourable at present, based on current processes, but the variation range of the results let some space for significant improvements. The balance of greenhouse gas emissions was favourable, and there also the variation range was very wide. As regards the other environmental impact categories, however, the uncertainties are too great to draw any conclusions. Because of the heterogeneity of approaches and results for the development of the algae pathway, we must bear in mind that without reliable and robust assessments of these sectors it will not be possible to direct their technical development sustainably. Macroalgae as a resource for biofuels production are very far from being a commercial reality, but do present some advantages such, for green algae, exhibiting several similarities with current G1 and G2 feedstock, being producers of starch and unlignified cellulose. Nevertheless, they also contain other specific compounds. Red and brown macroalgae are currently the most produced species, but their composition calls for the development of new transformation processes. Although technically feasible at lab-scale, the economic viability of such processes is being endangered by the complexity of the processes involved and the numerous steps required as well as by non-technical issues such as competition with other markets like green chemistry. To have a true share of the future fuel mix, macroalgae production needs to be increase by a dozen-time fold. This increase should not be done without social acceptance or at the expenses of the environment. This issue was adressed for microalgae, but data on macroalgae are currently lacking to be able to conduct Life Cycle Assessment (LCA) on this very specific environment. There are also additional problems to be taken into account, such as the lack of legislation or conflicts of usage with existing sea activities for example. Potential for high tonnage production seems real, but the challenge is to federate existing actors and new ones to build a new agro-industry. As a conclusion, no true leveraging option, leading to significant breakthroughs has really emerged as a short term solution, but wide spaces for significant improvement could be envisaged and more laboratory and pilot works have to be achieved before being able to move to a higher scale, leading to the first step toward industrial production.

Depuis quelques années, un intérêt croissant pour la production d’algues, notamment les micro-algues, pour la production d’énergie a été observé, spécialement pour la production de biocarburants pour le transport routier et aérien, filière que l’on a coutume de qualifier de troisième génération. Les algues et spécialement les micro-algues affichent de nombreux avantages comparés aux ressources terrestres, comme par exemple une productivité nettement plus élevée et l’absence de compétition avec les filières alimentaires. Néanmoins, l’état actuel des connaissances ne conduit pas à penser qu’un développement de la culture de micro-algues pour la production d’énergie soit possible à court-moyen terme en raison de nombreux écueils à lever comme la balance énergétique, le positionnement économique sans oublier les aspects sociétaux et environnementaux. Contrairement aux filières de première génération et certaines filières de seconde génération, les biocarburants de troisième génération sont encore loin de l’industrialisation mais la nécessité de disposer d’une analyse commune et partagée par l’ensemble des acteurs de la filière est nécessaire. Ainsi, en 2010, à l’initiative d’IFP Energies nouvelles, Airbus, Safran, EADS IW, et l’Académie des Technologies ont mis en place un groupe d’étude national dédié à l’étude du potentiel de la filière micro-algues pour la production de biocarburants G3. Ce groupe, nommé Algogroup, piloté par IFP Energies nouvelles a eu comme objectif d’aboutir à une vision partagée d’un possible déploiement de la filière G3. Outre les membres fondateurs, Algogroup a aussi intégré les expertises dans le domaine, de Sofiprotéol, de l’INRA1, de IFREMER1, du CEVA1, de Agrimip ainsi que de nombreux autres laboratoires et industriels. Les travaux menés au sein d’Algogroup ont donc permis de collecter un ensemble de données sur le potentiel et les limites de la filière, la position des industriels et des laboratoires, sur les axes de recherches nécessaires à mettre en oeuvre pour permettre à la filière de se développer. La réflexion a été structurée selon différents thèmes. Les aspects technologiques : quelles souches, quel mode de culture, de récolte, les aspects économiques ainsi que les aspects environnementaux. Ce papier met l’accent sur les résultats d’Algogroup sur le positionnement économique et environnemental des micro-algues. En parallèle, une réflexion sur le potentiel des macro-algues a aussi été conduite au sein d’Algogroup. A ce jour, uniquement un nombre limité de données est accessible pour le secteur des “algocarburants” et s’engager dans la construction d’une telle filière est encore prématuré. Ainsi les résultats provenant d’Algogroup seront de précieuses contributions à l’élaboration d’une feuille de route Algocarburants. Sur un plan économique, les coûts estimés des futurs biocarburants fabriqués à partir de micro-algues s’étaleront dans une fourchette de 2 à 7 $/Gal. Cette situation laisse à penser qu’un large champ de possibilités est envisageable pour réduire le coût de production des huiles algales mais il faut toutefois rester très prudent car les scenarii conduisant à ces diminutions reposent sur des hypothèses qu’il faudra démontrer. En effet, ces scenarii considèrent des technologies et des localisations de production très variables. Un autre point clé des modèles économiques analysés est que dans une large majorité de ces scenarii, la viabilité économique repose sur la valorisation des coproduits. De telles options ne sont pas considérées comme acceptables sur le long terme en raison de l’incertitude qui règne sur les capacités d’absorption par le marché de ces produits lorsqu’ils seront liés à une production en grosses quantités de biocarburants. Considérant le volet environnemental, le travail a démontré que la balance énergétique n’était pas favorable, en se référant aux procédés explorés disponibles. Toutefois, les variations enregistrées laissent la place à des possibilités d’amélioration. Concernant les émissions de gaz à effet de serre, le bilan apparait favorable mais là aussi avec une plage de variations très large. Pour les autres aspects environnementaux, les incertitudes sont trop grandes pour conclure. Par ailleurs, en raison des très grandes hétérogénéités des approches et des résultats publiés pour le développement d’une filière micro-algues, il apparait que sans évaluation fiable et robuste du secteur, il n’est pas possible de considérer à ce jour ledéveloppement des techniques comme totalement compatibles avec les critères de durabilité. Pour les macro-algues, nous sommes encore très loin de pouvoir les considérer comme une ressources pour la production de biocarburants mais celles-ci présentent des avantages, comme pour le cas des algues vertes des similitudes avec les ressources utilisées pour les filières G1 ou G2. Concernant les algues brunes et les algues rouges qui sont aujourd’hui les espèces les plus produites, leurs compositions demandent le développement de nouveaux procédés pour leur valorisation. Bien que ces procédés soient faisables à l’échelle du laboratoire, la viabilité économique à grande échelle est à démontrer en raison de la complexité et du nombre d’étapes requis par ces procédés tout comme la compétition de cette filière avec les autres marchés, comme celui de la chimie verte. Par ailleurs, pour que les macro-algues puissent avoir un réel devenir dans le mix biocarburants, leur production doit être considérablement augmentée. Ce point ne peut être considéré sans avoir évalué l’impact sociétal et environnemental et aujourd’hui peu de données sont accessibles pour bien apprécier ces 2 volets. Enfin, il faudrait bien analyser tous les aspects législatifs liés au développement de culture à gros tonnages en mer. En dépit de ces aspects, le potentiel de production de grosses quantités semble réel. En conclusion, le travail effectué par Algogroup n’a pas fait émerger de réelles ruptures permettant d’envisager un développement à court moyen terme de la filière algocarburants mais des possibilités d’amélioration peuvent être envisagées. Ceci demande de poursuivre les travaux au niveau du laboratoire et à l’échelle du pilote avant de passer à une échelle préindustrielle.
Tipo:  Text
Idioma:  Inglês
Identificador:  http://archimer.ifremer.fr/doc/00174/28565/26941.pdf

DOI:10.2516/ogst/2013164
Editor:  Editions Technip
Relação:  http://archimer.ifremer.fr/doc/00174/28565/
Formato:  application/pdf
Fonte:  Oil & Gas Science And Technology-revue D Ifp Energies Nouvelles (1294-4475) (Editions Technip), 2013-09 , Vol. 68 , N. 5 , P. 875-898
Direitos:  2013, IFP Energies nouvelles
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional