Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  ArchiMer
País:  France
Título:  Stress factors resulting from the Arctic vernal sea-ice melt : Impact on the viability of bacterial communities associated with sympagic algae
Autores:  Amiraux, Rémi
Burot, Christopher
Bonin, Patricia
Massé, Guillaume
Guasco, Sophie
Babin, Marcel
Vaultier, Frédéric
Rontani, Jean-françois
Data:  2020
Ano:  2020
Palavras-chave:  Bacteria
Sea ice
Sympagic algae
Ice biota
Viability
Stress factors
Salinity
Bactericidal free fatty acids
Carbon export
Resumo:  During sea-ice melt in the Arctic, primary production by sympagic (sea-ice) algae can be exported efficiently to the seabed if sinking rates are rapid and activities of associated heterotrophic bacteria are limited. Salinity stress due to melting ice has been suggested to account for such low bacterial activity. We further tested this hypothesis by analyzing samples of sea ice and sinking particles collected from May 18 to June 29, 2016, in western Baffin Bay as part of the Green Edge project. We applied a method not previously used in polar regions—quantitative PCR coupled to the propidium monoazide DNA-binding method—to evaluate the viability of bacteria associated with sympagic and sinking algae. We also measured cis-trans isomerase activity, known to indicate rapid bacterial response to salinity stress in culture studies, as well as free fatty acids known to be produced by algae as bactericidal compounds. The viability of sympagic-associated bacteria was strong in May (only approximately 10% mortality of total bacteria) and weaker in June (average mortality of 43%; maximum of 75%), with instances of elevated mortality in sinking particle samples across the time series (up to 72%). Short-term stress reflected by cis-trans isomerase activity was observed only in samples of sinking particles collected early in the time series. Following snow melt, however, and saturating levels of photosynthetically active radiation in June, we observed enhanced ice-algal production of bactericidal compounds (free palmitoleic acid; up to 4.8 mg L–1). We thus suggest that protection of sinking sympagic material from bacterial degradation early in a melt season results from low bacterial activity due to salinity stress, while later in the season, algal production of bactericidal compounds induces bacterial mortality. A succession of bacterial stressors during Arctic ice melt helps to explain the efficient export of sea-ice algal material to the seabed.
Tipo:  Text
Idioma:  Inglês
Identificador:  https://archimer.ifremer.fr/doc/00681/79329/81840.pdf

DOI:10.1525/elementa.076

https://archimer.ifremer.fr/doc/00681/79329/
Editor:  University of California Press
Formato:  application/pdf
Fonte:  Elementa-science Of The Anthropocene (2325-1026) (University of California Press), 2020 , Vol. 8 , N. 1 , P. 076 (20p.)
Direitos:  info:eu-repo/semantics/openAccess

restricted use
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional