Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  ArchiMer
País:  France
Título:  The ClC-3 chloride channel and osmoregulation in the European Sea Bass, Dicentrarchus labrax
Autores:  Bossus, Maryline
Charmantier, Guy
Blondeau-bidet, Eva
Valletta, Bianca
Boulo, Viviane
Lorin-nebel, Catherine
Data:  2013-07
Ano:  2013
Palavras-chave:  ClC-3 chloride channel
Na+/K+-ATPase
Dicentrarchus labrax
Osmoregulation
Osmosensing
Resumo:  Dicentrarchus labrax migrates between sea (SW), brackish and fresh water (FW) where chloride concentrations and requirements for chloride handling change: in FW, fish absorb chloride and restrict renal losses; in SW, they excrete chloride. In this study, the expression and localization of ClC-3 and Na+/K+-ATPase (NKA) were studied in fish adapted to SW, or exposed to FW from 10 min to 30 days. In gills, NKA-alpha 1 subunit expression transiently increased from 10 min and reached a stabilized intermediate expression level after 24 h in FW. ClC-3 co-localized with NKA in the basolateral membrane of mitochondria-rich cells (MRCs) at all conditions. The intensity of MRC ClC-3 immunostaining was significantly higher (by 50 %) 1 h after the transfer to FW, whereas the branchial ClC-3 protein expression was 30 % higher 7 days after the transfer as compared to SW. This is consistent with the increased number of immunopositive MRCs (immunostained for NKA and ClC-3). However, the ClC-3 mRNA expression was significantly lower in FW gills. In the kidney, after FW transfer, a transient decrease in NKA-alpha 1 subunit expression was followed by significantly higher stable levels from 24 h. The low ClC-3 protein expression detected at both salinities was not observed by immunocytochemistry in the SW kidney; ClC-3 was localized in the basal membrane of the collecting ducts and tubules 7 and 30 days after transfer to FW. Renal ClC-3 mRNA expression, however, seemed higher in SW than in FW. The potential role of this chloride channel ClC-3 in osmoregulatory and osmosensing mechanisms is discussed.
Tipo:  Text
Idioma:  Inglês
Identificador:  http://archimer.ifremer.fr/doc/00149/26044/25185.pdf

DOI:10.1007/s00360-012-0737-9
Editor:  Springer Heidelberg
Relação:  http://archimer.ifremer.fr/doc/00149/26044/
Formato:  application/pdf
Fonte:  Journal Of Comparative Physiology B-biochemical Systemic And Environmental Physiology (0174-1578) (Springer Heidelberg), 2013-07 , Vol. 183 , N. 5 , P. 641-662
Direitos:  Springer-Verlag Berlin Heidelberg 2013
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional