Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  ArchiMer
País:  France
Título:  Circulation and water mass transports on the East Antarctic shelf in the Mertz Glacier region
Autores:  Martin, Antoine
Houssais, Marie-noelle
Le Goff, Herve
Marec, Claudie
Dausse, Denis
Data:  2017-08
Ano:  2017
Palavras-chave:  Antarctica
Continental shelf
Modified Circumpolar Deep Water
Heat transport
Freshwater transport
Adelie Georges V Land
Resumo:  The East Antarctic shelf off Adélie-George V Land is known to be an important region for Dense Shelf Water (DSW) formation as a result of intense sea ice production in the Mertz Glacier Polynya during the winter season. It is also a region where the warm modified Circumpolar Deep Water (mCDW) penetrates onto the shelf during the summer. Using hydrographic observations from a summer survey in 2008 we implement a box inverse model to propose a comprehensive view of the steady state circulation on this shelf in summer. Additional information from mooring observations collected on the depression slope is used to provide context to the retrieved circulation scheme. Over the depression slope, the summer baroclinic structure of the currents is found to contrast with the almost barotropic structure in winter. The summer circulation is strongly constrained by the DSW distribution and forms a clockwise circulation primarily transporting the fresh surface waters and the warm mCDW around the dome of DSW. Over the upper flank of the Mertz Bank, the inflow branch transports the mCDW towards the Mertz Glacier, while, over the lower part of the slope, the outflow branch returns to the sill a diluted mode of the same water mass. A total of 0.19 Sv of mCDW inflows at the sill and two-third reach the Mertz Glacier and recirculate in front of it, allowing the mCDW to penetrate into the deeper part of the depression. Possible scenarios of interaction between the mCDW and the DSW with the glacier are examined. It is shown that, despite the water mass pathways and transports suggest possible ice-ocean interaction, both lateral and basal melting were likely small in summer 2008. Finally, our results suggest that, in addition to bathymetric features, the distribution of the residual DSW which is left from the preceding winter sets up regional pressure gradients which provide a seasonal control on the shelf circulation. In particular, the spring collapse of the convective patch would contribute to setting up a deep pycnocline which strongly impacts the shelf circulation in the following summer, with possible feedback of the mCDW transports on the polynya activity and water mass formation.
Tipo:  Text
Idioma:  Inglês
Identificador:  http://archimer.ifremer.fr/doc/00386/49766/50302.pdf

DOI:10.1016/j.dsr.2017.05.007

http://archimer.ifremer.fr/doc/00386/49766/
Editor:  Pergamon-elsevier Science Ltd
Formato:  application/pdf
Fonte:  Deep-sea Research Part I-oceanographic Research Papers (0967-0637) (Pergamon-elsevier Science Ltd), 2017-08 , Vol. 126 , P. 1-20
Direitos:  2017 Elsevier Ltd. All rights reserved.

info:eu-repo/semantics/openAccess

restricted use
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional