Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  ArchiMer
País:  France
Título:  Processing Strategies to Inactivate Enteric Viruses in Shellfish
Autores:  Richards, Gary P.
Mcleod, Catherine
Le Guyader, Soizick
Data:  2010-09
Ano:  2010
Palavras-chave:  Shellfish
Processing
Norovirus
Hepatitis A virus
Depuration
High pressure
Heat inactivation
Resumo:  Noroviruses, hepatitis A and E viruses, sapovirus, astrovirus, rotavirus, Aichi virus, enteric adenoviruses, poliovirus, and other enteroviruses enter shellfish through contaminated seawater or by contamination during handling and processing, resulting in outbreaks ranging from isolated to epidemic. Processing and disinfection methods include shellfish depuration and relaying, cooking and heat pasteurization, freezing, irradiation, and high pressure processing. All the methods can improve shellfish safety; however, from a commercial standpoint, none of the methods can guarantee total virus inactivation without impacting the organoleptic qualities of the shellfish. Noroviruses cause the majority of foodborne viral illnesses, yet there is conflicting information on their susceptibility to inactivation by processing. The inability to propagate and quantitatively enumerate some viral pathogens in vitro or in animal models has led to the use of norovirus surrogates, such as feline calicivirus and murine norovirus. During processing, these surrogates may not mimic the inactivation of the viruses they represent and are, therefore, of limited value. Likewise, reverse transcription-PCR has limited usefulness in monitoring processing effectiveness due to its inability to identify infectious from inactivated viruses. This article (a) describes mechanisms of virus uptake and persistence in shellfish, (b) reviews the state-of-the-art in food processing strategies for the inactivation of enteric viruses in shellfish, (c) suggests the use of combined processing procedures to enhance shellfish safety, (d) highlights limitations in research data derived from virus surrogate studies and molecular assay procedures, and (e) recommends enhanced funding for human volunteer studies and the development of assays to detect viable viruses.
Tipo:  Text
Idioma:  Inglês
Identificador:  http://archimer.ifremer.fr/doc/00011/12253/9199.pdf

DOI:10.1007/s12560-010-9045-2
Editor:  Springer
Relação:  http://archimer.ifremer.fr/doc/00011/12253/
Formato:  application/pdf
Fonte:  Food And Environmental Virology (1867-0334) (Springer), 2010-09 , Vol. 2 , N. 3 , P. 183-193
Direitos:  2010 Springer, Part of Springer Science+Business Media
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional