Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  ArchiMer
País:  France
Título:  Suspended Sediment Dynamics in the Macrotidal Seine Estuary (France) - Part 1: Numerical Modeling of Turbidity Maximum Dynamics
Autores:  Grasso, Florent
Verney, Romaric
Le Hir, Pierre
Thouvenin, Benedicte
Schulz, Elisabeth
Kervella, Youenn
Fard, I. Khojasteh Pour
Lemoine, J. -p.
Dumas, Franck
Garnier, Valerie
Data:  2018-01
Ano:  2018
Palavras-chave:  Estuary
Mud
Sand
Hydrodynamics
Turbidity maximum
Waves
Measurement
Modeling
Resumo:  Tidal pumping, baroclinic circulation and vertical mixing are known to be the main mechanisms responsible for the estuarine turbidity maximum (ETM) formation. However, the influence of hydro-meteorological conditions on ETM dynamics is still not properly grasped and requires further investigation to be quantified. Based on a realistic 3-dimensional numerical model of the macrotidal Seine Estuary (France) that accounts for mud and sand transport processes, the objective of this study is to quantify the influence of the main forcing (river flow, tides, waves) on the ETM location and mass changes. As expected, the ETM location is strongly modulated by semidiurnal tidal cycles and fortnightly timescales with a high sensitivity to river flow variations. The ETM mass is clearly driven by the tidal range, characteristic of the tidal pumping mechanism. However, it is not significantly affected by the river flow. Energetic wave conditions substantially influence the ETM mass by contributing up to 44% of the maximum mass observed during spring tides and by increasing the mass by a factor of three during mean tides compared to calm wave conditions. This means that neglecting wave forcing can result in significantly underestimating the ETM mass in estuarine environments. In addition, neap-to-spring phasing has a strong influence on ETM location and mass through a hysteresis response associated with the delay for tidal pumping and stratification to fully develop. Finally, simulations show that the uppermost limit of the Seine ETM location did not change notably during the last 35 years; however, the seaward limit migrated few kilometers upstream.
Tipo:  Text
Idioma:  Inglês
Identificador:  http://archimer.ifremer.fr/doc/00416/52770/53638.pdf

DOI:10.1002/2017JC013185

http://archimer.ifremer.fr/doc/00416/52770/
Editor:  Amer Geophysical Union
Formato:  application/pdf
Fonte:  Journal Of Geophysical Research-oceans (2169-9275) (Amer Geophysical Union), 2018-01 , Vol. 123 , N. 1 , P. 558-577
Direitos:  2017. American Geophysical Union. All Rights Reserved.

info:eu-repo/semantics/openAccess

restricted use
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional