Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  ArchiMer
País:  France
Título:  The ECCO-Darwin Data-Assimilative Global Ocean Biogeochemistry Model: Estimates of Seasonal to Multidecadal Surface Ocean pCO(2) and Air-Sea CO2 Flux
Autores:  Carroll, D.
Menemenlis, D.
Adkins, J. F.
Bowman, K. W.
Brix, H.
Dutkiewicz, S.
Fenty, I.
Gierach, M. M.
Hill, C.
Jahn, O.
Landschutzer, P.
Lauderdale, J. M.
Liu, J.
Manizza, M.
Naviaux, J. D.
Roedenbeck, C.
Schimel, D. S.
Van Der Stocken, T.
Zhang, H.
Data:  2020-10
Ano:  2020
Palavras-chave:  Ocean modeling
Biogeochemistry
Ocean carbon cycle
Data assimilation
Air&#8208
Sea CO2 flux
Ecosystem model
Resumo:  Quantifying variability in the ocean carbon sink remains problematic due to sparse observations and spatiotemporal variability in surface ocean pCO(2). To address this challenge, we have updated and improved ECCO-Darwin, a global ocean biogeochemistry model that assimilates both physical and biogeochemical observations. The model consists of an adjoint-based ocean circulation estimate from the Estimating the Circulation and Climate of the Ocean (ECCO) consortium and an ecosystem model developed by the Massachusetts Institute of Technology Darwin Project. In addition to the data-constrained ECCO physics, a Green's function approach is used to optimize the biogeochemistry by adjusting initial conditions and six biogeochemical parameters. Over seasonal to multidecadal timescales (1995-2017), ECCO-Darwin exhibits broad-scale consistency with observed surface ocean pCO(2) and air-sea CO2 flux reconstructions in most biomes, particularly in the subtropical and equatorial regions. The largest differences between CO2 uptake occur in subpolar seasonally stratified biomes, where ECCO-Darwin results in stronger winter uptake. Compared to the Global Carbon Project OBMs, ECCO-Darwin has a time-mean global ocean CO2 sink (2.47 +/- 0.50 Pg C year(-1)) and interannual variability that are more consistent with interpolation-based products. Compared to interpolation-based methods, ECCO-Darwin is less sensitive to sparse and irregularly sampled observations. Thus, ECCO-Darwin provides a basis for identifying and predicting the consequences of natural and anthropogenic perturbations to the ocean carbon cycle, as well as the climate-related sensitivity of marine ecosystems. Our study further highlights the importance of physically consistent, property-conserving reconstructions, as are provided by ECCO, for ocean biogeochemistry studies.
Tipo:  Text
Idioma:  Inglês
Identificador:  https://archimer.ifremer.fr/doc/00676/78824/81108.pdf

https://archimer.ifremer.fr/doc/00676/78824/81109.docx

https://archimer.ifremer.fr/doc/00676/78824/81110.xlsx

https://archimer.ifremer.fr/doc/00676/78824/81111.pdf

DOI:10.1029/2019MS001888

https://archimer.ifremer.fr/doc/00676/78824/
Editor:  Amer Geophysical Union
Formato:  application/pdf
Fonte:  Journal Of Advances In Modeling Earth Systems (Amer Geophysical Union), 2020-10 , Vol. 12 , N. 10 , P. e2019MS001888 (28p.)
Direitos:  info:eu-repo/semantics/openAccess

restricted use
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional