Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  BABT
País:  Brazil
Título:  The physiological and biochemical mechanism of nitrate-nitrogen removal by water hyacinth from agriculture eutrophic wastewater
Autores:  Wenwei,WU
Ang,LIU
Konghuan,WU
Lei,ZHAO
Xiaohua,BAI
Kun-zhi,LI
ASHRAF,Muhammad Aqeel
Limei,CHEN
Data:  2016-01-01
Ano:  2016
Palavras-chave:  Water hyacinth
Nitrate-nitrogen removal
Nitrate conversion
N-transported amino acids
Resumo:  ABSTRACT Large amount of agriculturl wastewater containing high level nitrate-nitrogen (NO3 --N) is produced from modern intensive agricultural production management due to the excessive use of chemical fertilizers and livestock scale farming. The hydroponic experiment of water hyacinth was conducted for analyzing the content of NO3 --N, soluble sugar content, N-transported the amino acid content and growth change in water hyacinth to explore its purification ability to remove NO3 --N from agriculture eutrophic wastewater and physiological and biochemical mechanism of this plant to remove NO3 --N. The results showed that the water hyacinth could effectively utilize the NO3 --N from agriculture eutrophic wastewater. Compared with the control, the contents of NO3 -change to NO3 --N in the root, leaf petiole and leaf blade of water hyacinth after treatment in the wastewater for a week was significantly higher than that in the control plants treated with tap water, and also the biomass of water hyacinth increased significantly, indicating that the accumulation of biomass due to the rapid growth of water hyacinth could transfer some amount of NO3 --N.13C-NMR analysis confirmed that water hyacinth would convert the part nitrogen absorbed from agriculture eutrophic wastewater to ammonia nitrogen, which increased the content of aspartic acid and glutamic acid, decreased the content of soluble sugar, sucrose and fructose and the content of N-storaged asparagine and glutamine, lead to enhance the synthesis of plant amino acids and promote the growth of plants. These results indicate that the nitrate in agriculture eutrophic wastewater can be utilized by water hyacinth as nitrogen nutrition, and can promote plant growth by using soluble sugar and amide to synthesis amino acids and protein.
Tipo:  Info:eu-repo/semantics/article
Idioma:  Inglês
Identificador:  http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-89132016000200200
Editor:  Instituto de Tecnologia do Paraná - Tecpar
Relação:  10.1590/1678-4324-2016160517
Formato:  text/html
Fonte:  Brazilian Archives of Biology and Technology v.59 n.spe 2016
Direitos:  info:eu-repo/semantics/openAccess
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional