Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  BJMBR
País:  Brazil
Título:  A forced running wheel system with a microcontroller that provides high-intensity exercise training in an animal ischemic stroke model
Autores:  Chen,C.C.
Chang,M.W.
Chang,C.P.
Chan,S.C.
Chang,W.Y.
Yang,C.L.
Lin,M.T.
Data:  2014-10-01
Ano:  2014
Palavras-chave:  Forced non-electric-shock running wheel
Middle cerebral artery occlusion
Inclined plane test
Modified neurological severity score
Triphenyltetrazolium chloride
Resumo:  We developed a forced non-electric-shock running wheel (FNESRW) system that provides rats with high-intensity exercise training using automatic exercise training patterns that are controlled by a microcontroller. The proposed system successfully makes a breakthrough in the traditional motorized running wheel to allow rats to perform high-intensity training and to enable comparisons with the treadmill at the same exercise intensity without any electric shock. A polyvinyl chloride runway with a rough rubber surface was coated on the periphery of the wheel so as to permit automatic acceleration training, and which allowed the rats to run consistently at high speeds (30 m/min for 1 h). An animal ischemic stroke model was used to validate the proposed system. FNESRW, treadmill, control, and sham groups were studied. The FNESRW and treadmill groups underwent 3 weeks of endurance running training. After 3 weeks, the experiments of middle cerebral artery occlusion, the modified neurological severity score (mNSS), an inclined plane test, and triphenyltetrazolium chloride were performed to evaluate the effectiveness of the proposed platform. The proposed platform showed that enhancement of motor function, mNSS, and infarct volumes was significantly stronger in the FNESRW group than the control group (P<0.05) and similar to the treadmill group. The experimental data demonstrated that the proposed platform can be applied to test the benefit of exercise-preconditioning-induced neuroprotection using the animal stroke model. Additional advantages of the FNESRW system include stand-alone capability, independence of subjective human adjustment, and ease of use.
Tipo:  Info:eu-repo/semantics/article
Idioma:  Inglês
Identificador:  http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2014001000858
Editor:  Associação Brasileira de Divulgação Científica
Relação:  10.1590/1414-431X20143754
Formato:  text/html
Fonte:  Brazilian Journal of Medical and Biological Research v.47 n.10 2014
Direitos:  info:eu-repo/semantics/openAccess
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional