Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  Electron. J. Biotechnol.
País:  Chile
Título:  Bioconversion and saccharification of some lignocellulosic wastes by Aspergillus oryzae ITCC-4857.01 for fermentable sugar production
Autores:  Begum,Most. Ferdousi
Alimon,Abdul Razak
Data:  2011-09-01
Ano:  2011
Palavras-chave:  Aspergillus oryzae
Biomass
Cellulase
Lignocellulosic substrates
Pre-treatment
Saccharification
Resumo:  The recent interest in bioconversion of agricultural and industrial wastes to chemical feedstock has led to extensive studies on cellulolytic enzymes produced by microorganisms. In the present study three lignocellulosic substrates viz. sugarcane bagasse, sawdust and water hyacinth were pre-treated with alkali and enzyme and their effect on bioconversion has been investigated. The ability of selected substrates for induction of cellulase enzyme by A. oryzae ITCC 4857.01 and for the potentiality of the induced enzyme to saccharify the substrates were also assessed. The maximum degree of conversion of substrate (0.415%) and improved specific substrate consumption (0.99 g substrate/g dry biomass) was exhibited in sugarcane bagasse after alkali treatment at 96 hrs. Both alkali-treatment and enzyme-treatment, water hyacinth was the best for cellulase induction and showed maximum endoglucanase activity of 11.42 U/ml. Reducing sugar yield ranged from 1.12 mg/ml for enzyme treated sawdust at 48 hrs to 7.53 mg/ml for alkali treated sugarcane bagasse at 96 hrs. Alkali-treated sugarcane bagasse gave the highest saccharification rate of 9.03% after 96 hrs. The most resistant substrate was sawdust which produced 5.92% saccharification by alkaline treatment. The saccharification of lignocellulosic substrates by enzyme produced by A. oryzae ITCC 4857.01 indicates the enzymes specificity towards the substrates. The use of such enzyme in lingo-cellulose hydrolysis will lead to efficient conversion of cellulose materials to other important products.
Tipo:  Journal article
Idioma:  Inglês
Identificador:  http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-34582011000500003
Editor:  Pontificia Universidad Católica de Valparaíso
Formato:  text/html
Fonte:  Electronic Journal of Biotechnology v.14 n.5 2011
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional