Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  Ecology and Society
País:  Canada
Título:  Extinction Risk in Successional Landscapes Subject to Catastrophic Disturbances
Autores:  Boughton, David; Pacific Northwest Research Station, U.S. Forest Service; david.boughton@noaa.gov
Malvadkar, Urmila; Princeton University; malvadkr@princeton.edu
Data:  2002-08-19
Ano:  2002
Palavras-chave:  Biodiversity
Catastrophe
Dispersal
Disturbance
Extinction
Landscape
Metapopulation
Patch dynamics
Patchy population
Succession
Resumo:  We explore the thesis that stochasticity in successional-disturbance systems can be an agent of species extinction. The analysis uses a simple model of patch dynamics for seral stages in an idealized landscape; each seral stage is assumed to support a specialist biota. The landscape as a whole is characterized by a mean patch birth rate, mean patch size, and mean lifetime for each patch type. Stochasticity takes three forms: (1) patch stochasticity is randomness in the birth times and sizes of individual patches, (2) landscape stochasticity is variation in the annual means of birth rate and size, and (3) turnover mode is whether a patch is eliminated by disturbance or by successional change. Analytical and numerical analyses of the model suggest that landscape stochasticity is the most important agent. Landscape stochasticity increases the extinction risk to species by increasing the risk that the habitat will fluctuate to zero, by reducing the mean abundance of species, and by increasing the variance in species abundance. The highest risk was found to occur in species that inhabit patches with short lifetimes. The results of this general model suggest an important mechanism by which climate change threatens biodiversity: an increase in the frequency of extreme climate events will probably cause pulses of disturbance during some time periods; these in turn would cause wider fluctuations in annual disturbance rates and thus increase the overall level of landscape stochasticity. However, the model also suggests that humans can manipulate landscape stochasticity to reduce risk. In particular, if managed disturbances were more evenly distributed in time, attrition of the regional biota might be prevented. Other work on the connection between patch dynamics and extinction risk assumes the absence of landscape stochasticity and thus overlooks an important component of risk to biodiversity.
Tipo:  Peer-Reviewed Reports
Idioma:  Inglês
Identificador:  vol6/iss2/art2/
Editor:  Resilience Alliance
Formato:  text/html application/pdf
Fonte:  Ecology and Society; Vol. 6, No. 2 (2002)
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional