Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  Ecology and Society
País:  Canada
Título:  Insight on Invasions and Resilience Derived from Spatiotemporal Discontinuities of Biomass at Local and Regional Scales
Autores:  Angeler, David G; Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment; david.angeler@slu.se
Allen, Craig R; U.S. Geological Survey, Nebraska Cooperative Fish and Wildlife Research Unit; School of Natural Resources, University of Nebraska, Lincoln; allencr@unl.edu
Johnson, Richard K; Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment; richard.johnson@slu.se
Data:  2012-06-29
Ano:  2012
Palavras-chave:  Algal blooms
Alternative states
Biological invasions
Boreal lakes
Complex adaptive systems
Discontinuities
Landscape ecology
Panarchy
Resilience
Resumo:  Understanding the social and ecological consequences of species invasions is complicated by nonlinearities in processes, and differences in process and structure as scale is changed. Here we use discontinuity analyses to investigate nonlinear patterns in the distribution of biomass of an invasive nuisance species that could indicate scale-specific organization. We analyze biomass patterns in the flagellate Gonyostomum semen (Raphidophyta) in 75 boreal lakes during an 11-year period (1997-2007). With simulations using a unimodal null model and cluster analysis, we identified regional groupings of lakes based on their biomass patterns. We evaluated the variability of membership of individual lakes in regional biomass groups. Temporal trends in local and regional discontinuity patterns were analyzed using regressions and correlations with environmental variables that characterize nutrient conditions, acidity status, temperature variability, and water clarity. Regionally, there was a significant increase in the number of biomass groups over time, indicative of an increased number of scales at which algal biomass organizes across lakes. This increased complexity correlated with the invasion history of G. semen and broad-scale environmental change (recovery from acidification). Locally, no consistent patterns of lake membership to regional biomass groups were observed, and correlations with environmental variables were lake specific. The increased complexity of regional biomass patterns suggests that processes that act within or between scales reinforce the presence of G. semen and its potential to develop high-biomass blooms in boreal lakes. Emergent regional patterns combined with locally stochastic dynamics suggest a bleak future for managing G. semen, and more generally why invasive species can be ecologically successful.
Tipo:  Peer-Reviewed Insight
Idioma:  Inglês
Identificador:  vol17/iss2/art32/
Editor:  Resilience Alliance
Formato:  text/html application/pdf
Fonte:  Ecology and Society; Vol. 17, No. 2 (2012)
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional