Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Registro completo
Provedor de dados:  Rev. Bras. Ciênc. Solo
País:  Brazil
Título:  Rhizobial Inoculation and Molybdenum Fertilization in Peanut Crops Grown in a No Tillage System After 20 Years of Pasture
Autores:  Crusciol,Carlos Alexandre Costa
Ferrari Neto,Jayme
Mui,Tsai Siu
Franzluebbers,Alan Joseph
Costa,Cláudio Hideo Martins da
Castro,Gustavo Spadotti Amaral
Ribeiro,Lívia Cristina
Costa,Nídia Raquel
Data:  2019-01-01
Ano:  2019
Palavras-chave:  Arachis hypogaea
Urochloa brizantha
Symbiotic fixation
Nodulation
Nitrogenase activity
Resumo:  ABSTRACT: Peanut (Arachis hypogea) is an important legume grain consumed by humans and utilized for effective nutrient cycling in a diverse cropping system. Areas that have been cultivated with perennial pasture for decades may have nutritional deficiencies and lack a sufficient population of atmospheric nitrogen-fixing bacteria. Molybdenum is an essential micronutrient that is part of the enzyme nitrogenase contained within symbiotic Bradyrhizobium bacteria, which are responsible for fixing nitrogen in legumes. Our objective was to evaluate the effects of application of Mo at different rates and a rhizobial inoculant on peanut growth characteristics. The experiment was conducted in the 2009/2010 growing season in a no-tillage cropping system following 20-year use as pasture [Urochloa brizantha (Syn. Brachiaria brizantha)]. The experimental design was a randomized complete block with four replicates. The main plots were characterized by peanut inoculation with Bradyrhizobium inoculant or without, and the split plots were characterized by different rates of molybdenum (0, 50, 100, and 200 g ha-1) applied to leaves in the form of ammonium molybdate. The nutritional status of plants, nodulation (number of nodules and nodule dry matter per plant), nitrogenase activity, and nitrogenase specific activity were evaluated at 45 and 64 days after emergence (DAE). The yield components and kernel yield were evaluated at the end of the growing season. Nitrogenase enzyme activity at 64 DAE approximately doubled, and the number of pods per plant was greater with inoculation than without, both of which led to greater yields of pods and kernels. In long-term pasture areas, inoculation and molybdenum fertilization greater than the currently recommended rate appear to be necessary to increase pod and kernel yield per hectare of peanut when managed under no-tillage.
Tipo:  Info:eu-repo/semantics/article
Idioma:  Inglês
Identificador:  http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832019000100500
Editor:  Sociedade Brasileira de Ciência do Solo
Relação:  10.1590/18069657rbcs20170399
Formato:  text/html
Fonte:  Revista Brasileira de Ciência do Solo v.43 2019
Direitos:  info:eu-repo/semantics/openAccess
Fechar
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional