|
|
|
Registros recuperados: 12 | |
|
|
Jaspers, Cornelia; Huwer, Bastian; Antajan, Elvire; Hosia, Aino; Hinrichsen, Hans-harald; Biastoch, Arne; Angel, Dror; Asmus, Ragnhild; Augustin, Christina; Bagheri, Siamak; Beggs, Steven E.; Balsby, Thorsten J. S.; Boersma, Maarten; Bonnet, Delphine; Christensen, Jens T.; Daenhardt, Andreas; Delpy, Floriane; Falkenhaug, Tone; Finenko, Galina; Fleming, Nicholas E. C.; Fuentes, Veronica; Galil, Bella; Gittenberger, Arjan; Griffin, Donal C.; Haslob, Holger; Javidpour, Jamileh; Kamburska, Lyudmila; Kube, Sandra; Langenberg, Victor T.; Lehtiniemi, Maiju; Lombard, Fabien; Malzahn, Arne; Marambio, Macarena; Mihneva, Veselina; Moller, Lene Friis; Niermann, Ulrich; Okyar, Melek Isinibilir; Ozdemir, Zekiye Birinci; Pitois, Sophie; Reusch, Thorsten B. H.; Robbens, Johan; Stefanova, Kremena; Thibault, Delphine; Van Der Veer, Henk W.; Vansteenbrugge, Lies; Van Walraven, Lodewijk; Wozniczka, Adam. |
Aim Invasive species are of increasing global concern. Nevertheless, the mechanisms driving further distribution after the initial establishment of non‐native species remain largely unresolved, especially in marine systems. Ocean currents can be a major driver governing range occupancy, but this has not been accounted for in most invasion ecology studies so far. We investigate how well initial establishment areas are interconnected to later occupancy regions to test for the potential role of ocean currents driving secondary spread dynamics in order to infer invasion corridors and the source–sink dynamics of a non‐native holoplanktonic biological probe species on a continental scale. Location Western Eurasia. Time period 1980s–2016. Major taxa studied ‘Comb... |
Tipo: Text |
Palavras-chave: Biological invasions; Gelatinous zooplankton; Invasion corridors; Invasive species; Jellyfish; Marine connectivity; Mnemiopsis leidyi; Range expansion; Source populations; Source-sink dynamics. |
Ano: 2018 |
URL: https://archimer.ifremer.fr/doc/00440/55133/56595.pdf |
| |
|
|
Van Sebille, Erik; Griffies, Stephen M.; Abernathey, Ryan; Adams, Thomas P.; Berloff, Pavel; Biastoch, Arne; Blanke, Bruno; Chassignet, Eric P.; Cheng, Yu; Cotter, Colin J.; Deleersnijder, Eric; Doos, Kristofer; Drake, Henri F.; Drijfhout, Sybren; Gary, Stefan F.; Heemink, Arnold W.; Kjellsson, Joakim; Koszalka, Inga Monika; Lange, Michael; Lique, Camille; Macgilchrist, Graeme A.; Marsh, Robert; Adame, C. Gabriela Mayorga; Mcadam, Ronan; Nencioli, Francesco; Paris, Claire B.; Piggott, Matthew D.; Polton, Jeff A.; Ruehs, Siren; Shah, Syed H. A. M.; Thomas, Matthew; Wang, Jinbo; Wolfram, Phillip J.; Zanna, Laure; Zika, Jan D.. |
Lagrangian analysis is a powerful way to analyse the output of ocean circulation models and other ocean velocity data such as from altimetry. In the Lagrangian approach, large sets of virtual particles are integrated within the three-dimensional, time-evolving velocity fields. Over several decades, a variety of tools and methods for this purpose have emerged. Here, we review the state of the art in the field of Lagrangian analysis of ocean velocity data, starting from a fundamental kinematic framework and with a focus on large-scale open ocean applications. Beyond the use of explicit velocity fields, we consider the influence of unresolved physics and dynamics on particle trajectories. We comprehensively list and discuss the tools currently available for... |
Tipo: Text |
Palavras-chave: Ocean circulation; Lagrangian analysis; Connectivity; Particle tracking; Future modelling. |
Ano: 2018 |
URL: http://archimer.ifremer.fr/doc/00412/52324/53099.pdf |
| |
|
|
Schubert, René; Gula, Jonathan; Greatbatch, Richard J.; Baschek, Burkard; Biastoch, Arne. |
Mesoscale eddies can be strengthened by the absorption of submesoscale eddies resulting from mixed layer baroclinic instabilities. This is shown for mesoscale eddies in the Agulhas Current system by investigating the kinetic energy cascade with a spectral and a coarse-graining approach in two model simulations of the Agulhas region. One simulation resolves mixed layer baroclinic instabilities and one does not. When mixed layer baroclinic instabilities are included, the largest submesoscale near-surface fluxes occur in wintertime in regions of strong mesoscale activity for upscale as well as downscale directions. The forward cascade at the smallest resolved scales occurs mainly in frontogenetic regions in the upper 30 m of the water column. In the Agulhas... |
Tipo: Text |
|
Ano: 2020 |
URL: https://archimer.ifremer.fr/doc/00644/75652/76523.pdf |
| |
|
|
Danabasoglu, Gokhan; Yeager, Steve G.; Bailey, David; Behrens, Erik; Bentsen, Mats; Bi, Daohua; Biastoch, Arne; Boening, Claus; Bozec, Alexandra; Canuto, Vittorio M.; Cassou, Christophe; Chassignet, Eric; Coward, Andrew C.; Danilov, Sergey; Diansky, Nikolay; Drange, Helge; Farneti, Riccardo; Fernandez, E; Fogli, Pier Giuseppe; Forget, Gael; Fujii, Yosuke; Griffies, Stephen M.; Gusev, Anatoly; Heimbach, Patrick; Howard, Armando; Jung, Thomas; Kelley, Maxwell; Large, William G.; Leboissetier, Anthony; Lu, Jianhua; Madec, G; Marsland, Simon J.; Masinam, Simona; Navarram, Antonio; Nurser, A. J. George; Pirani, Anna; Salas Y Melia, David; Samuels, Bonita L.; Scheinert, Markus; Sidorenko, Dmitry; Treguier, Anne-marie; Tsujino, Hiroyuki; Uotila, Petteri; Valcke, Sophie; Voldoire, Aurore; Wangi, Qiang. |
Simulation characteristics from eighteen global ocean–sea-ice coupled models are presented with a focus on the mean Atlantic meridional overturning circulation (AMOC) and other related fields in the North Atlantic. These experiments use inter-annually varying atmospheric forcing data sets for the 60-year period from 1948 to 2007 and are performed as contributions to the second phase of the Coordinated Ocean-ice Reference Experiments (CORE-II). The protocol for conducting such CORE-II experiments is summarized. Despite using the same atmospheric forcing, the solutions show significant differences. As most models also differ from available observations, biases in the Labrador Sea region in upper-ocean potential temperature and salinity distributions, mixed... |
Tipo: Text |
Palavras-chave: Global ocean-sea-ice modelling; Ocean model comparisons; Atmospheric forcing; Experimental design; Atlantic meridional overturning circulation; North Atlantic simulations. |
Ano: 2014 |
URL: http://archimer.ifremer.fr/doc/00164/27525/28368.pdf |
| |
|
|
Griffies, Stephen M.; Yin, Jianjun; Durack, Paul J.; Goddard, Paul; Bates, Susan C.; Behrens, Erik; Bentsen, Mats; Bi, Daohua; Biastoch, Arne; Boening, Claus W.; Bozec, Alexandra; Chassignet, Eric; Danabasoglu, Gokhan; Danilov, Sergey; Domingues, Catia M.; Drange, Helge; Farneti, Riccardo; Fernandez, Elodie; Greatbatch, Richard J.; Holland, David M.; Ilicak, Mehmet; Large, William G.; Lorbacher, Katja; Lu, Jianhua; Marsland, Simon J.; Mishra, Akhilesh; Nurser, A. J. George; Salas Y Melia, David; Palter, Jaime B.; Samuels, Bonita L.; Schroeter, Jens; Schwarzkopf, Franziska U.; Sidorenko, Dmitry; Treguier, Anne-marie; Tseng, Yu-heng; Tsujino, Hiroyuki; Uotila, Petteri; Valcke, Sophie; Voldoire, Aurore; Wang, Qiang; Winton, Michael; Zhang, Xuebin. |
The Palomares Margin, an NNE–SSW segment of the South Iberian Margin located between the Alboran and the Algerian–Balearic basins, is dissected by two major submarine canyon systems: the Gata (in the South) and the Alías–Almanzora (in the North). New swath bathymetry, side-scan sonar images, accompanied by 5 kHz and TOPAS subbottom profiles, allow us to recognize these canyons as Mediterranean examples of medium-sized turbidite systems developed in a tectonically active margin. The Gata Turbidite System is confined between residual basement seamounts and exhibits incised braided channels that feed a discrete deep-sea fan, which points to a dominantly coarse-grained turbiditic system. The Alías–Almanzora Turbidite System, larger and less confined, is a... |
Tipo: Text |
Palavras-chave: Sea level; CORE global ocean-ice simulations; Steric sea level; Global sea level; Ocean heat content. |
Ano: 2014 |
URL: http://archimer.ifremer.fr/doc/00188/29904/28349.pdf |
| |
|
|
Durgadoo, Jonathan V.; Loveday, Benjamin R.; Reason, Chris J. C.; Penven, Pierrick; Biastoch, Arne. |
The Agulhas Current plays a crucial role in the thermohaline circulation through its leakage into the South Atlantic Ocean. Under both past and present climates, the trade winds and westerlies could have the ability to modulate the amount of Indian-Atlantic inflow. Compelling arguments have been put forward suggesting that trade winds alone have little impact on the magnitude of Agulhas leakage. Here, employing three ocean models for robust analysisa global coarse-resolution, a regional eddy-permitting, and a nested high-resolution eddy-resolving configurationand systematically altering the position and intensity of the westerly wind belt in a series of sensitivity experiments, it is shown that the westerlies, in particular their intensity, control the... |
Tipo: Text |
Palavras-chave: Boundary currents; Meridional overturning circulation; Wind stress; Mesoscale models; Numerical analysis; Modeling. |
Ano: 2013 |
URL: http://archimer.ifremer.fr/doc/00161/27247/25452.pdf |
| |
|
|
Caley, Thibaut; Peeters, Frank J. C.; Biastoch, Arne; Rossignol, Linda; Van Sebille, Erik; Durgadoo, Jonathan; Malaize, Bruno; Giraudeau, Jacques; Arthur, Kristina; Zahn, Rainer. |
The Indian-Atlantic water exchange south of Africa (Agulhas leakage) is a key component of the global ocean circulation. No quantitative estimation of the paleo-Agulhas leakage exists. We quantify the variability in interocean exchange over the past 640,000 years, using planktic foraminiferal assemblage data from two marine sediment records to define an Agulhas leakage efficiency index. We confirm the validity of our new approach with a numerical ocean model that realistically simulates the modern Agulhas leakage changes. Our results suggest that, during the past several glacial-interglacial cycles, the Agulhas leakage varied by ~10 sverdrup and more during major climatic transitions. This lends strong credence to the hypothesis that modifications in the... |
Tipo: Text |
Palavras-chave: Quantitative palaeo Agulhas leakage; Planktic foraminiferal; Numerical ocean model; Overturning circulation. |
Ano: 2014 |
URL: https://archimer.ifremer.fr/doc/00291/40172/39028.pdf |
| |
|
|
Wang, Qiang; Ilicak, Mehmet; Gerdes, Ruediger; Drange, Helge; Aksenov, Yevgeny; Bailey, David A.; Bentsen, Mats; Biastoch, Arne; Bozec, Alexandra; Boening, Claus; Cassou, Christophe; Chassignet, Eric; Coward, Andrew C.; Curry, Beth; Danabasoglu, Gokhan; Danilov, Sergey; Fernandez, Elodie; Fogli, Pier Giuseppe; Fujii, Yosuke; Griffies, Stephen M.; Iovino, Doroteaciro; Jahn, Alexandra; Jung, Thomas; Large, William G.; Lee, Craig; Lique, Camille; Lu, Jianhua; Masina, Simona; Nurser, A. J. George; Rabe, Benjamin; Roth, Christina; Salas Y Melia, David; Samuels, Bonita L.; Spence, Paul; Tsujino, Hiroyuki; Valcke, Sophie; Voldoire, Aurore; Wang, Xuezhu; Yeager, Steve G.. |
The Arctic Ocean simulated in 14 global ocean-sea ice models in the framework of the Coordinated Ocean-ice Reference Experiments, phase II (CORE-II) is analyzed in this study. The focus is on the Arctic liquid freshwater (FW) sources and freshwater content (FWC). The models agree on the interannual variability of liquid FW transport at the gateways where the ocean volume transport determines the FW transport variability. The variation of liquid FWC is induced by both the surface FW flux (associated with sea ice production) and lateral liquid FW transport, which are in phase when averaged on decadal time scales. The liquid FWC shows an increase starting from the mid-1990s, caused by the reduction of both sea ice formation and liquid FW export, with the... |
Tipo: Text |
Palavras-chave: Arctic Ocean; Freshwater; Sea ice; CORE II atmospheric forcing. |
Ano: 2016 |
URL: http://archimer.ifremer.fr/doc/00313/42463/41835.pdf |
| |
|
|
Ilicak, Mehmet; Drange, Helge; Wang, Qiang; Gerdes, Rudiger; Aksenov, Yevgeny; Bailey, David; Bentsen, Mats; Biastoch, Arne; Bozec, Alexandra; Boening, Claus; Cassou, Christophe; Chassignet, Eric; Coward, Andrew C.; Curry, Beth; Danabasoglu, Gokhan; Danilov, Sergey; Fernandez, Elodie; Fogli, Pier Giuseppe; Fujii, Yosuke; Griffies, Stephen M.; Iovino, Doroteaciro; Jahn, Alexandra; Jung, Thomas; Large, William G.; Lee, Craig; Lique, Camille; Lu, Jianhua; Masina, Simona; Nurser, A. J. George; Roth, Christina; Salas Y Melia, David; Samuels, Bonita L.; Spence, Paul; Tsujino, Hiroyuki; Valcke, Sophie; Voldoire, Aurore; Wang, Xuezhu; Yeager, Steve G.. |
In this paper we compare the simulated Arctic Ocean in 15 global ocean–sea ice models in the framework of the Coordinated Ocean-ice Reference Experiments, phase II (CORE-II). Most of these models are the ocean and sea-ice components of the coupled climate models used in the Coupled Model Intercomparison Project Phase 5 (CMIP5) experiments. We mainly focus on the hydrography of the Arctic interior, the state of Atlantic Water layer and heat and volume transports at the gateways of the Davis Strait, the Bering Strait, the Fram Strait and the Barents Sea Opening. We found that there is a large spread in temperature in the Arctic Ocean between the models, and generally large differences compared to the observed temperature at intermediate depths. Warm bias... |
Tipo: Text |
Palavras-chave: Arctic Ocean; Atlantic Water; St. Anna Trough; Density currents; CORE-II atmospheric forcing. |
Ano: 2016 |
URL: http://archimer.ifremer.fr/doc/00317/42864/42295.pdf |
| |
|
|
Rattan, Sanjay; Myers, Paul G.; Treguier, Anne-marie; Theetten, Sebastien; Biastoch, Arne; Boening, Claus. |
Model drift in the Labrador Sea in eddy permitting model simulations is examined using a series of configurations based on the NEMO numerical framework. There are two phases of the drift that we can identify, beginning with an initial rapid 3-year period, associated with the adjustment of the model from its initial conditions followed by an extended model drift/adjustment that continued for at least another decade. The drift controlled the model salinity in the Labrador Sea, over-riding the variability. Thus, during this initial period, similar behavior was observed between the inter-annually forced experiments as with perpetual year forcing. The results also did not depend on whether the configuration was global, or regional North Atlantic Ocean. The... |
Tipo: Text |
Palavras-chave: Numerical modelling; Labrador Sea; Model salinity drift; Boundary currents; Eddy-permitting models. |
Ano: 2010 |
URL: http://archimer.ifremer.fr/doc/00013/12411/9226.pdf |
| |
|
|
Hewitt, Helene T.; Roberts, Malcolm; Mathiot, Pierre; Biastoch, Arne; Blockley, Ed; Chassignet, Eric P.; Fox-kemper, Baylor; Hyder, Pat; Marshall, David P.; Popova, Ekaterina; Treguier, Anne-marie; Zanna, Laure; Yool, Andrew; Yu, Yongqiang; Beadling, Rebecca; Bell, Mike; Kuhlbrodt, Till; Arsouze, Thomas; Bellucci, Alessio; Castruccio, Fred; Gan, Bolan; Putrasahan, Dian; Roberts, Christopher D.; Van Roekel, Luke; Zhang, Qiuying. |
Purpose of Review Assessment of the impact of ocean resolution in Earth System models on the mean state, variability, and future projections and discussion of prospects for improved parameterisations to represent the ocean mesoscale. Recent Findings The majority of centres participating in CMIP6 employ ocean components with resolutions of about 1 degree in their full Earth System models (eddy-parameterising models). In contrast, there are also models submitted to CMIP6 (both DECK and HighResMIP) that employ ocean components of approximately 1/4 degree and 1/10 degree (eddy-present and eddy-rich models). Evidence to date suggests that whether the ocean mesoscale is explicitly represented or parameterised affects not only the mean state of the ocean but also... |
Tipo: Text |
Palavras-chave: Ocean models; Resolution; Parameterisation; Mesoscale; Submesoscale. |
Ano: 2020 |
URL: https://archimer.ifremer.fr/doc/00654/76603/77753.pdf |
| |
|
|
Hirschi, Joel J. M.; Barnier, Bernard; Boning, Claus; Biastoch, Arne; Blaker, Adam T.; Coward, Andrew; Danilov, Sergey; Drijfhout, Sybren; Getzlaff, Klaus; Griffies, Steven M.; Hasumi, Hiroyasu; Hewitt, Helene; Iovino, Doroteaciro; Kawasaki, Takao; Kiss, Andrew E.; Koldunov, Nikolay; Marzocchi, Alice; Mecking, Jennifer, V; Moat, Ben; Molines, Jean-marc; Myers, Paul G.; Penduff, Thierry; Roberts, Malcolm; Treguier, Anne-marie; Sein, Dmitry, V; Sidorenko, Dimitry; Small, Justin; Spence, Paul; Thompson, Luanne; Weijer, Wilbert; Xu, Xiaobiao. |
The Atlantic meridional overturning circulation (AMOC) represents the zonally integrated stream function of meridional volume transport in the Atlantic Basin. The AMOC plays an important role in transporting heat meridionally in the climate system. Observations suggest a heat transport by the AMOC of 1.3 PW at 26 degrees N-a latitude which is close to where the Atlantic northward heat transport is thought to reach its maximum. This shapes the climate of the North Atlantic region as we know it today. In recent years there has been significant progress both in our ability to observe the AMOC in nature and to simulate it in numerical models. Most previous modeling investigations of the AMOC and its impact on climate have relied on models with horizontal... |
Tipo: Text |
Palavras-chave: Atlantic Meridional Overturning; High-resolution modeling; Mesoscale. |
Ano: 2020 |
URL: https://archimer.ifremer.fr/doc/00657/76865/78146.pdf |
| |
Registros recuperados: 12 | |
|
|
|