Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Ordenar por: 

RelevânciaAutorTítuloAnoImprime registros no formato resumido
Registros recuperados: 1
Primeira ... 1 ... Última
Imagem não selecionada

Imprime registro no formato completo
Object recognition using proportion-based prior information Application to fisheries acoustics ArchiMer
Lefort, Riwal; Fablet, Ronan; Boucher, I-m.
This paper addresses the inference of probabilistic classification models using weakly supervised learning The main contribution of this work is the development of learning methods for training datasets consisting of groups of objects with known relative class priors This can be regarded as a generalization of the situation addressed by Bishop and Ulusoy (2005) where training information is given as the presence or absence of object classes in each set Generative and discriminative classification methods are conceived and compared for weakly supervised learning as well as a non-linear version of the probabilistic discriminative models The considered models are evaluated on standard datasets and an application to fisheries acoustics is reported The proposed...
Tipo: Text Palavras-chave: Weakly supervised learning; Generative classification model; Discriminative classification model.
Ano: 2011 URL: http://archimer.ifremer.fr/doc/00030/14103/11372.pdf
Registros recuperados: 1
Primeira ... 1 ... Última
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional