Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Ordenar por: 

RelevânciaAutorTítuloAnoImprime registros no formato resumido
Registros recuperados: 2
Primeira ... 1 ... Última
Imagem não selecionada

Imprime registro no formato completo
Coral Reef Fish Detection and Recognition in Underwater Videos by Supervised Machine Learning: Comparison Between Deep Learning and HOG plus SVM Methods ArchiMer
Villon, Sebastien; Chaumont, Marc; Subsol, Gerard; Villeger, Sebastien; Claverie, Thomas; Mouillot, David.
In this paper, we present two supervised machine learning methods to automatically detect and recognize coral reef fishes in underwater HD videos. The first method relies on a traditional two-step approach: extraction of HOG features and use of a SVM classifier. The second method is based on Deep Learning. We compare the results of the two methods on real data and discuss their strengths and weaknesses.
Tipo: Text Palavras-chave: Support Vector Machine; Feature Vector; Coral Reef; Deep Learn; Convolutional Neural Network.
Ano: 2016 URL: https://archimer.ifremer.fr/doc/00387/49860/74458.pdf
Imagem não selecionada

Imprime registro no formato completo
A new method to control error rates in automated species identification with deep learning algorithms ArchiMer
Villon, Sébastien; Mouillot, David; Chaumont, Marc; Subsol, Gérard; Claverie, Thomas; Villéger, Sébastien.
Processing data from surveys using photos or videos remains a major bottleneck in ecology. Deep Learning Algorithms (DLAs) have been increasingly used to automatically identify organisms on images. However, despite recent advances, it remains difficult to control the error rate of such methods. Here, we proposed a new framework to control the error rate of DLAs. More precisely, for each species, a confidence threshold was automatically computed using a training dataset independent from the one used to train the DLAs. These species-specific thresholds were then used to post-process the outputs of the DLAs, assigning classification scores to each class for a given image including a new class called “unsure”. We applied this framework to a study case...
Tipo: Text
Ano: 2020 URL: https://archimer.ifremer.fr/doc/00640/75244/75406.pdf
Registros recuperados: 2
Primeira ... 1 ... Última
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional