Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Ordenar por: 

RelevânciaAutorTítuloAnoImprime registros no formato resumido
Registros recuperados: 2
Primeira ... 1 ... Última
Imagem não selecionada

Imprime registro no formato completo
Consequences of Data Error in Aggregate Indicators: Evidence from the Human Development Index AgEcon
Wolff, Hendrik; Chong, Howard; Auffhammer, Maximilian.
This paper examines the consequences of data error in data series used to construct aggregate indicators. Using the most popular indicator of country level economic development, the Human Development Index (HDI), we identify three separate sources of data error. We propose a simple statistical framework to investigate how data error may bias rank assignments and identify two striking consequences for the HDI. First, using the cutoff values used by the United Nations to assign a country as 'low', 'medium', or 'high' developed, we find that currently up to 45% of developing countries are misclassified. Moreover, by replicating prior development/macroeconomic studies, we find that key estimated parameters such as Gini coefficients and speed of convergence...
Tipo: Working or Discussion Paper Palavras-chave: Measurement Error; International Comparative Statistics; Research Methods/ Statistical Methods; O10; C82.
Ano: 2008 URL: http://purl.umn.edu/6502
Imagem não selecionada

Imprime registro no formato completo
Human Development Index: Are Developing Countries Misclassified? (former title: "Consequences of Data Error in Aggregate Indicators: Evidence from the Human Development Index) AgEcon
Wolff, Hendrik; Chong, Howard; Auffhammer, Maximilian.
This paper examines the consequences of data error in data series used to construct aggregate indicators. Using the most popular indicator of country level economic development, the Human Development Index (HDI), we identify three separate sources of data error. We propose a simple statistical framework to investigate how data error may bias rank assignments and identify two striking consequences for the HDI. First, using the cutoff values used by the United Nations to assign a country as ‘low’, ‘medium’, or ‘high’ developed, we find that currently up to 45% of developing countries are misclassified. Moreover, by replicating prior development/macroeconomic studies, we find that key estimated parameters such as Gini coefficients and speed of convergence...
Tipo: Working or Discussion Paper Palavras-chave: Measurement Error; International Comparative Statistics; International Development; O10; C82.
Ano: 2009 URL: http://purl.umn.edu/49763
Registros recuperados: 2
Primeira ... 1 ... Última
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional