|
|
|
|
|
Vic, Clement; Naveira Garabato, Alberto C.; Green, J. A. Mattias; Waterhouse, Amy F.; Zhao, Zhongxiang; Melet, Angelique; De Lavergne, Casimir; Buijsman, Maarten C.; Stephenson, Gordon R.. |
Turbulent mixing in the ocean is key to regulate the transport of heat, freshwater and biogeochemical tracers, with strong implications for Earth's climate. In the deep ocean, tides supply much of the mechanical energy required to sustain mixing via the generation of internal waves, known as internal tides, whose fate-the relative importance of their local versus remote breaking into turbulence-remains uncertain. Here, we combine a semi-analytical model of internal tide generation with satellite and in situ measurements to show that from an energetic viewpoint, small-scale internal tides, hitherto overlooked, account for the bulk (>50%) of global internal tide generation, breaking and mixing. Furthermore, we unveil the pronounced geographical variations... |
Tipo: Text |
|
Ano: 2019 |
URL: https://archimer.ifremer.fr/doc/00601/71275/69674.pdf |
| |
|
| |
|
|
|