|
|
|
|
|
Tjiputra, J. F.; Roelandt, C.; Bentsen, M.; Lawrence, D. M.; Lorentzen, T.; Schwinger, J.; Seland, O.; Heinze, C.. |
The recently developed Norwegian Earth System Model (NorESM) is employed for simulations contributing to the CMIP5 (Coupled Model Intercomparison Project phase 5) experiments and the fifth assessment report of the Intergovernmental Panel on Climate Change (IPCC-AR5). In this manuscript, we focus on evaluating the ocean and land carbon cycle components of the NorESM, based on the preindustrial control and historical simulations. Many of the observed large scale ocean biogeochemical features are reproduced satisfactorily by the NorESM. When compared to the climatological estimates from the World Ocean Atlas (WOA), the model simulated temperature, salinity, oxygen, and phosphate distributions agree reasonably well in both the surface layer and deep water... |
Tipo: Text |
|
Ano: 2013 |
URL: https://archimer.ifremer.fr/doc/00383/49449/49924.pdf |
| |
|
|
Pfeil, B.; Olsen, A.; Bakker, D. C. E.; Hankin, S.; Koyuk, H.; Kozyr, A.; Malczyk, J.; Manke, A.; Metzl, N.; Sabine, C. L.; Akl, J.; Alin, S. R.; Bates, N.; Bellerby, R. G. J.; Borges, A.; Boutin, J.; Brown, P. J.; Cai, W. -j.; Chavez, F. P.; Chen, A.; Cosca, C.; Fassbender, A. J.; Feely, R. A.; Gonzalez-davila, M.; Goyet, C.; Hales, B.; Hardman-mountford, N.; Heinze, C.; Hood, M.; Hoppema, M.; Hunt, C. W.; Hydes, D.; Ishii, M.; Johannessen, T.; Jones, S. D.; Key, R. M.; Koertzinger, A.; Landschuetzer, P.; Lauvset, S. K.; Lefevre, N.; Lenton, A.; Lourantou, A.; Merlivat, L.; Midorikawa, T.; Mintrop, L.; Miyazaki, C.; Murata, A.; Nakadate, A.; Nakano, Y.; Nakaoka, S.; Nojiri, Y.; Omar, A. M.; Padin, X. A.; Park, G. -h.; Paterson, K.; Perez, Fiz F; Pierrot, D.; Poisson, A.; Rios, A. F.; Santana-casiano, J. M.; Salisbury, J.; Sarma, V. V. S. S.; Schlitzer, R.; Schneider, B.; Schuster, U.; Sieger, R.; Skjelvan, I.; Steinhoff, T.; Suzuki, T.; Takahashi, T.; Tedesco, K.; Telszewski, M.; Thomas, H.; Tilbrook, B.; Tjiputra, J.; Vandemark, D.; Veness, T.; Wanninkhof, R.; Watson, A. J.; Weiss, R.; Wong, C. S.; Yoshikawa-inoue, H.. |
A well-documented, publicly available, global data set of surface ocean carbon dioxide (CO2) parameters has been called for by international groups for nearly two decades. The Surface Ocean CO2 Atlas (SOCAT) project was initiated by the international marine carbon science community in 2007 with the aim of providing a comprehensive, publicly available, regularly updated, global data set of marine surface CO2, which had been subject to quality control (QC). Many additional CO2 data, not yet made public via the Carbon Dioxide Information Analysis Center (CDIAC), were retrieved from data originators, public websites and other data centres. All data were put in a uniform format following a strict protocol. Quality control was carried out according to clearly... |
Tipo: Text |
|
Ano: 2013 |
URL: https://archimer.ifremer.fr/doc/00383/49450/49923.pdf |
| |
|
|
Tjiputra, J. F.; Olsen, A.; Assmann, K.; Pfeil, Benjamin; Heinze, C.. |
A coupled biogeochemical-physical ocean model is used to study the seasonal and long-term variations of surface pCO(2) in the North Atlantic Ocean. The model agrees well with recent underway pCO(2) observations from the Surface Ocean CO2 Atlas (SOCAT) in various locations in the North Atlantic. Some of the distinct seasonal cycles observed in different parts of the North Atlantic are well reproduced by the model. In most regions except the subpolar domain, recent observed trends in pCO(2) and air-sea carbon fluxes are also simulated by the model. Over the longer period between 1960-2008, the primary mode of surface pCO(2) variability is dominated by the increasing trend associated with the invasion of anthropogenic CO2 into the ocean. We show that the... |
Tipo: Text |
|
Ano: 2012 |
URL: https://archimer.ifremer.fr/doc/00266/37702/36703.pdf |
| |
|
|
Ciais, P.; Dolman, A. J.; Bombelli, A.; Duren, R.; Peregon, A.; Rayner, P. J.; Miller, C.; Gobron, N.; Kinderman, G.; Marland, G.; Gruber, N.; Chevallier, F.; Andres, R. J.; Balsamo, G.; Bopp, L.; Breon, F. -m.; Broquet, G.; Dargaville, R.; Battin, T. J.; Borges, A.; Bovensmann, H.; Buchwitz, M.; Butler, J.; Canadell, J. G.; Cook, R. B.; Defries, R.; Engelen, R.; Gurney, K. R.; Heinze, C.; Heimann, M.; Held, A.; Henry, M.; Law, B.; Luyssaert, S.; Miller, J.; Moriyama, T.; Moulin, C.; Myneni, R. B.; Nussli, C.; Obersteiner, M.; Ojima, D.; Pan, Y.; Paris, J. -d.; Piao, S. L.; Poulter, B.; Plummer, S.; Quegan, S.; Raymond, P.; Reichstein, M.; Rivier, L.; Sabine, C.; Schimel, D.; Tarasova, O.; Valentini, R.; Wang, R.; Van Der Werf, G.; Wickland, D.; Williams, M.; Zehner, C.. |
A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon observation system requires transformational advances from the existing sparse, exploratory framework towards a dense, robust, and sustained system in all components: anthropogenic emissions, the atmosphere, the ocean, and the terrestrial biosphere. The paper is addressed to scientists, policymakers, and funding agencies who need to have a global picture of the current state of the (diverse) carbon observations. We... |
Tipo: Text |
|
Ano: 2014 |
URL: https://archimer.ifremer.fr/doc/00293/40398/38913.pdf |
| |
|
|
Sabine, C. L.; Hankin, S.; Koyuk, H.; Bakker, D. C. E.; Pfeil, B.; Olsen, A.; Metzl, N.; Kozyr, A.; Fassbender, A.; Manke, A.; Malczyk, J.; Akl, J.; Alin, S. R.; Bellerby, R. G. J.; Borges, A.; Boutin, J.; Brown, P. J.; Cai, W. -j.; Chavez, F. P.; Chen, A.; Cosca, C.; Feely, R. A.; Gonzalez-davila, M.; Goyet, C.; Hardman-mountford, N.; Heinze, C.; Hoppema, M.; Hunt, C. W.; Hydes, D.; Ishii, M.; Johannessen, T.; Key, R. M.; Koertzinger, A.; Landschuetzer, P.; Lauvset, S. K.; Lefevre, N.; Lenton, A.; Lourantou, A.; Merlivat, L.; Midorikawa, T.; Mintrop, L.; Miyazaki, C.; Murata, A.; Nakadate, A.; Nakano, Y.; Nakaoka, S.; Nojiri, Y.; Omar, A. M.; Padin, X. A.; Park, G. -h.; Paterson, K.; Perez, F.f.; Pierrot, D.; Poisson, A.; Rios, A. F.; Salisbury, J.; Santana-casiano, J. M.; Sarma, V. V. S. S.; Schlitzer, R.; Schneider, B.; Schuster, U.; Sieger, R.; Skjelvan, I.; Steinhoff, T.; Suzuki, T.; Takahashi, T.; Tedesco, K.; Telszewski, M.; Thomas, H.; Tilbrook, B.; Vandemark, D.; Veness, T.; Watson, A. J.; Weiss, R.; Wong, C. S.; Yoshikawa-inoue, H.. |
A well documented, publicly available, global data set for surface ocean carbon dioxide (CO2) parameters has been called for by international groups for nearly two decades. The Surface Ocean CO2 Atlas (SOCAT) project was initiated by the international marine carbon science community in 2007 with the aim of providing a comprehensive, publicly available, regularly updated, global data set of marine surface CO2, which had been subject to quality control (QC). SOCAT version 1.5 was made public in September 2011 and holds 6.3 million quality controlled surface CO2 data from the global oceans and coastal seas, spanning four decades (1968–2007). The SOCAT gridded data is the second data product to come from the SOCAT project. Recognizing that some groups may have... |
Tipo: Text |
|
Ano: 2013 |
URL: https://archimer.ifremer.fr/doc/00141/25178/23284.pdf |
| |
|
|
Wanninkhof, R.; Park, G. -h.; Takahashi, T.; Sweeney, C.; Feely, R.; Nojiri, Y.; Gruber, N.; Doney, S. C.; Mckinley, G. A.; Lenton, A.; Le Quere, C.; Heinze, C.; Schwinger, J.; Graven, H.; Khatiwala, S.. |
Estimates of the anthropogenic global-integrated sea-air carbon dioxide (CO2) flux from 1990 to 2009, based on different models and measurements, range from –1.4 to –2.6 Pg C yr–1. The median values of anthropogenic CO2 for each method show better agreement and are: −1.9 for Pg C yr−1 for numerical ocean general circulation hind cast models (OGCMs) with parameterized biogeochemistry; –2.1 Pg C yr–1 for atmospheric inverse models; –1.9 Pg C yr–1 for global atmospheric constraints based on O2 / N2 ratios for 1990–2000; and –2.4 Pg C yr–1 for oceanic inverse models. An updated estimate of this anthropogenic CO2 flux based on a climatology of sea-air partial pressure of CO2 differences (ΔpCO2) (Takahashi et al., 2009) and a bulk formulation of gas transfer... |
Tipo: Text |
|
Ano: 2013 |
URL: https://archimer.ifremer.fr/doc/00141/25179/23285.pdf |
| |
|
|
Heinze, C.; Meyer, S.; Goris, N.; Anderson, L.; Steinfeldt, R.; Chang, N.; Le Quere, C.; Bakker, D. C. E.. |
Carbon dioxide (CO2) is, next to water vapour, considered to be the most important natural greenhouse gas on Earth. Rapidly rising atmospheric CO2 concentrations caused by human actions such as fossil fuel burning, land-use change or cement production over the past 250 years have given cause for concern that changes in Earth's climate system may progress at a much faster pace and larger extent than during the past 20 000 years. Investigating global carbon cycle pathways and finding suitable adaptation and mitigation strategies has, therefore, become of major concern in many research fields. The oceans have a key role in regulating atmospheric CO2 concentrations and currently take up about 25% of annual anthropogenic carbon emissions to the atmosphere.... |
Tipo: Text |
|
Ano: 2015 |
URL: https://archimer.ifremer.fr/doc/00293/40374/38951.pdf |
| |
|
|
|