As a fruit of the current revolution in sequencing technology, transcriptomes can now be analyzed at an unprecedented level of detail. These advances have been exploited for detecting differential expressed genes across biological samples and for quantifying the abundances of various RNA transcripts within one gene. However, explicit strategies for detecting the hidden differential abundances of RNA transcripts in biological samples have not been defined. In this work, we present two novel statistical tests to address this issue: a 'gene structure sensitive' Poisson test for detecting differential expression when the transcript structure of the gene is known, and a kernel-based test called Maximum Mean Discrepancy when it is unknown. We... |