Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Ordenar por: 

RelevânciaAutorTítuloAnoImprime registros no formato resumido
Registros recuperados: 11
Primeira ... 1 ... Última
Imagem não selecionada

Imprime registro no formato completo
Global ocean carbon uptake: magnitude, variability and trends ArchiMer
Wanninkhof, R.; Park, G. -h.; Takahashi, T.; Sweeney, C.; Feely, R.; Nojiri, Y.; Gruber, N.; Doney, S. C.; Mckinley, G. A.; Lenton, A.; Le Quere, C.; Heinze, C.; Schwinger, J.; Graven, H.; Khatiwala, S..
Estimates of the anthropogenic global-integrated sea-air carbon dioxide (CO2) flux from 1990 to 2009, based on different models and measurements, range from –1.4 to –2.6 Pg C yr–1. The median values of anthropogenic CO2 for each method show better agreement and are: −1.9 for Pg C yr−1 for numerical ocean general circulation hind cast models (OGCMs) with parameterized biogeochemistry; –2.1 Pg C yr–1 for atmospheric inverse models; –1.9 Pg C yr–1 for global atmospheric constraints based on O2 / N2 ratios for 1990–2000; and –2.4 Pg C yr–1 for oceanic inverse models. An updated estimate of this anthropogenic CO2 flux based on a climatology of sea-air partial pressure of CO2 differences (ΔpCO2) (Takahashi et al., 2009) and a bulk formulation of gas transfer...
Tipo: Text
Ano: 2013 URL: https://archimer.ifremer.fr/doc/00141/25179/23285.pdf
Imagem não selecionada

Imprime registro no formato completo
Sea-air CO2 fluxes in the Indian Ocean between 1990 and 2009 ArchiMer
Sarma, V. V. S. S.; Lenton, A.; Law, R. M.; Metzl, N.; Patra, P. K.; Doney, S.; Lima, I. D.; Dlugokencky, E.; Ramonet, M.; Valsala, V..
The Indian Ocean (44 degrees S-30 degrees N) plays an important role in the global carbon cycle, yet it remains one of the most poorly sampled ocean regions. Several approaches have been used to estimate net sea-air CO2 fluxes in this region: interpolated observations, ocean biogeochemical models, atmospheric and ocean inversions. As part of the RECCAP (REgional Carbon Cycle Assessment and Processes) project, we combine these different approaches to quantify and assess the magnitude and variability in Indian Ocean sea-air CO2 fluxes between 1990 and 2009. Using all of the models and inversions, the median annual mean sea-air CO2 uptake of -0.37 +/- 0.06 PgC yr(-1) is consistent with the -0.24 +/- 0.12 PgC yr(-1) calculated from observations. The fluxes...
Tipo: Text
Ano: 2013 URL: https://archimer.ifremer.fr/doc/00253/36408/34948.pdf
Imagem não selecionada

Imprime registro no formato completo
A uniform, quality controlled Surface Ocean CO2 Atlas (SOCAT) ArchiMer
Pfeil, B.; Olsen, A.; Bakker, D. C. E.; Hankin, S.; Koyuk, H.; Kozyr, A.; Malczyk, J.; Manke, A.; Metzl, N.; Sabine, C. L.; Akl, J.; Alin, S. R.; Bates, N.; Bellerby, R. G. J.; Borges, A.; Boutin, J.; Brown, P. J.; Cai, W. -j.; Chavez, F. P.; Chen, A.; Cosca, C.; Fassbender, A. J.; Feely, R. A.; Gonzalez-davila, M.; Goyet, C.; Hales, B.; Hardman-mountford, N.; Heinze, C.; Hood, M.; Hoppema, M.; Hunt, C. W.; Hydes, D.; Ishii, M.; Johannessen, T.; Jones, S. D.; Key, R. M.; Koertzinger, A.; Landschuetzer, P.; Lauvset, S. K.; Lefevre, N.; Lenton, A.; Lourantou, A.; Merlivat, L.; Midorikawa, T.; Mintrop, L.; Miyazaki, C.; Murata, A.; Nakadate, A.; Nakano, Y.; Nakaoka, S.; Nojiri, Y.; Omar, A. M.; Padin, X. A.; Park, G. -h.; Paterson, K.; Perez, Fiz F; Pierrot, D.; Poisson, A.; Rios, A. F.; Santana-casiano, J. M.; Salisbury, J.; Sarma, V. V. S. S.; Schlitzer, R.; Schneider, B.; Schuster, U.; Sieger, R.; Skjelvan, I.; Steinhoff, T.; Suzuki, T.; Takahashi, T.; Tedesco, K.; Telszewski, M.; Thomas, H.; Tilbrook, B.; Tjiputra, J.; Vandemark, D.; Veness, T.; Wanninkhof, R.; Watson, A. J.; Weiss, R.; Wong, C. S.; Yoshikawa-inoue, H..
A well-documented, publicly available, global data set of surface ocean carbon dioxide (CO2) parameters has been called for by international groups for nearly two decades. The Surface Ocean CO2 Atlas (SOCAT) project was initiated by the international marine carbon science community in 2007 with the aim of providing a comprehensive, publicly available, regularly updated, global data set of marine surface CO2, which had been subject to quality control (QC). Many additional CO2 data, not yet made public via the Carbon Dioxide Information Analysis Center (CDIAC), were retrieved from data originators, public websites and other data centres. All data were put in a uniform format following a strict protocol. Quality control was carried out according to clearly...
Tipo: Text
Ano: 2013 URL: https://archimer.ifremer.fr/doc/00383/49450/49923.pdf
Imagem não selecionada

Imprime registro no formato completo
Inter-annual variability of the carbon dioxide oceanic sink south of Tasmania ArchiMer
Borges, A. V.; Tilbrook, B.; Metzl, N.; Lenton, A.; Delille, B..
We compiled a large data-set from 22 cruises spanning from 1991 to 2003, of the partial pressure of CO2 (pCO(2)) in surface waters over the continental shelf (CS) and adjacent open ocean (43 degrees to 46 degrees S; 145 degrees to 150 degrees E), south of Tasmania. Climatological seasonal cycles of pCO(2) in the CS, the subtropical zone (STZ) and the subAntarctic zone (SAZ) are described and used to determine monthly pCO(2) anomalies. These are used in combination with monthly anomalies of sea surface temperature (SST) to investigate inter-annual variations of SST and pCO(2). Monthly anomalies of SST (as intense as 2 degrees C) are apparent in the CS, STZ and SAZ, and are indicative of strong inter-annual variability that seems to be related to large-scale...
Tipo: Text
Ano: 2008 URL: https://archimer.ifremer.fr/doc/00238/34889/33141.pdf
Imagem não selecionada

Imprime registro no formato completo
Surface Ocean CO2 Atlas (SOCAT) Gridded Data Products ArchiMer
Sabine, C. L.; Hankin, S.; Koyuk, H.; Bakker, D. C. E.; Pfeil, B.; Olsen, A.; Metzl, N.; Kozyr, A.; Fassbender, A.; Manke, A.; Malczyk, J.; Akl, J.; Alin, S. R.; Bellerby, R. G. J.; Borges, A.; Boutin, J.; Brown, P. J.; Cai, W. -j.; Chavez, F. P.; Chen, A.; Cosca, C.; Feely, R. A.; Gonzalez-davila, M.; Goyet, C.; Hardman-mountford, N.; Heinze, C.; Hoppema, M.; Hunt, C. W.; Hydes, D.; Ishii, M.; Johannessen, T.; Key, R. M.; Koertzinger, A.; Landschuetzer, P.; Lauvset, S. K.; Lefevre, N.; Lenton, A.; Lourantou, A.; Merlivat, L.; Midorikawa, T.; Mintrop, L.; Miyazaki, C.; Murata, A.; Nakadate, A.; Nakano, Y.; Nakaoka, S.; Nojiri, Y.; Omar, A. M.; Padin, X. A.; Park, G. -h.; Paterson, K.; Perez, F.f.; Pierrot, D.; Poisson, A.; Rios, A. F.; Salisbury, J.; Santana-casiano, J. M.; Sarma, V. V. S. S.; Schlitzer, R.; Schneider, B.; Schuster, U.; Sieger, R.; Skjelvan, I.; Steinhoff, T.; Suzuki, T.; Takahashi, T.; Tedesco, K.; Telszewski, M.; Thomas, H.; Tilbrook, B.; Vandemark, D.; Veness, T.; Watson, A. J.; Weiss, R.; Wong, C. S.; Yoshikawa-inoue, H..
A well documented, publicly available, global data set for surface ocean carbon dioxide (CO2) parameters has been called for by international groups for nearly two decades. The Surface Ocean CO2 Atlas (SOCAT) project was initiated by the international marine carbon science community in 2007 with the aim of providing a comprehensive, publicly available, regularly updated, global data set of marine surface CO2, which had been subject to quality control (QC). SOCAT version 1.5 was made public in September 2011 and holds 6.3 million quality controlled surface CO2 data from the global oceans and coastal seas, spanning four decades (1968–2007). The SOCAT gridded data is the second data product to come from the SOCAT project. Recognizing that some groups may have...
Tipo: Text
Ano: 2013 URL: https://archimer.ifremer.fr/doc/00141/25178/23284.pdf
Imagem não selecionada

Imprime registro no formato completo
Global carbon budget 2014 ArchiMer
Le Quere, C.; Moriarty, R.; Andrew, R. M.; Peters, G. P.; Ciais, P.; Friedlingstein, P.; Jones, S. D.; Sitch, S.; Tans, P.; Arneth, A.; Boden, T. A.; Bopp, L.; Bozec, Y.; Canadell, J. G.; Chini, L. P.; Chevallier, F.; Cosca, C. E.; Harris, I.; Hoppema, M.; Houghton, R. A.; House, J. I.; Jain, A. K.; Johannessen, T.; Kato, E.; Keeling, R. F.; Kitidis, V.; Klein Goldewijk, K.; Koven, C.; Landa, C. S.; Landschuetzer, P.; Lenton, A.; Lima, I. D.; Marland, G.; Mathis, J. T.; Metzl, N.; Nojiri, Y.; Olsen, A.; Ono, T.; Peng, S.; Peters, W.; Pfeil, B.; Poulter, B.; Raupach, M. R.; Regnier, P.; Roedenbeck, C.; Saito, S.; Salisbury, J. E.; Schuster, U.; Schwinger, J.; Seferian, R.; Segschneider, J.; Steinhoff, T.; Stocker, B. D.; Sutton, A. J.; Takahashi, T.; Tilbrook, B.; Van Der Werf, G. R.; Viovy, N.; Wang, Y. -p.; Wanninkhof, R.; Wiltshire, A.; Zeng, N..
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuel combustion and cement...
Tipo: Text
Ano: 2015 URL: https://archimer.ifremer.fr/doc/00291/40251/38629.pdf
Imagem não selecionada

Imprime registro no formato completo
Quantifying the influence of CO2 seasonality on future aragonite undersaturation onset ArchiMer
Sasse, T. P.; Mcneil, B. I.; Matear, R. J.; Lenton, A..
Ocean acidification is a predictable consequence of rising atmospheric carbon dioxide (CO2), and is highly likely to impact the entire marine ecosystem - from plankton at the base of the food chain to fish at the top. Factors which are expected to be impacted include reproductive health, organism growth and species composition and distribution. Predicting when critical threshold values will be reached is crucial for projecting the future health of marine ecosystems and for marine resources planning and management. The impacts of ocean acidification will be first felt at the seasonal scale, however our understanding how seasonal variability will influence rates of future ocean acidification remains poorly constrained due to current model and data...
Tipo: Text
Ano: 2015 URL: https://archimer.ifremer.fr/doc/00293/40372/38980.pdf
Imagem não selecionada

Imprime registro no formato completo
Evaluating Southern Ocean Carbon Eddy-Pump From Biogeochemical-Argo Floats ArchiMer
Llort, Joan; Langlais, C.; Matear, R.; Moreau, S.; Lenton, A.; Strutton, Peter G..
The vertical transport of surface water and carbon into ocean's interior, known as subduction, is one of the main mechanisms through which the ocean influences Earth's climate. New instrumental approaches have shown the occurrence of localized and intermittent subduction episodes associated with small-scale ocean circulation features. These studies also revealed the importance of such events for the export of organic matter, the so-called eddy-pump. However, the transient and localized nature of episodic subduction hindered its large-scale evaluation to date. In this work, we present an approach to detect subduction events at the scale of the Southern Ocean using measurements collected by biogeochemical autonomous floats (BGCArgo). We show how subduction...
Tipo: Text
Ano: 2018 URL: https://archimer.ifremer.fr/doc/00673/78496/80770.pdf
Imagem não selecionada

Imprime registro no formato completo
Air-sea CO2 flux in the Pacific Ocean for the period 1990-2009 ArchiMer
Ishii, M.; Feely, R. A.; Rodgers, K. B.; Park, G. -h.; Wanninkhof, R.; Sasano, D.; Sugimoto, H.; Cosca, C. E.; Nakaoka, S.; Telszewski, M.; Nojiri, Y.; Fletcher, S. E. Mikaloff; Niwa, Y.; Patra, P. K.; Valsala, V.; Nakano, H.; Lima, I.; Doney, S. C.; Buitenhuis, E. T.; Aumont, Olivier; Dunne, J. P.; Lenton, A.; Takahashi, T..
Air-sea CO2 fluxes over the Pacific Ocean are known to be characterized by coherent large-scale structures that reflect not only ocean subduction and upwelling patterns, but also the combined effects of wind-driven gas exchange and biology. On the largest scales, a large net CO2 influx into the extratropics is associated with a robust seasonal cycle, and a large net CO2 efflux from the tropics is associated with substantial interannual variability. In this work, we have synthesized estimates of the net air-sea CO2 flux from a variety of products, drawing upon a variety of approaches in three sub-basins of the Pacific Ocean, i. e., the North Pacific extratropics (18-66 degrees N), the tropical Pacific (18 degrees S-18 degrees N), and the South Pacific...
Tipo: Text
Ano: 2014 URL: http://archimer.ifremer.fr/doc/00192/30320/28789.pdf
Imagem não selecionada

Imprime registro no formato completo
Sea-air CO2 fluxes in the Southern Ocean for the period 1990-2009 ArchiMer
Lenton, A.; Tilbrook, B.; Law, R. M.; Bakker, D.; Doney, S. C.; Gruber, N.; Ishii, M.; Hoppema, M.; Lovenduski, N. S.; Matear, R. J.; Mcneil, B. I.; Metzl, N.; Mikaloff Fletcher, S. E.; Monteiro, P. M. S.; Roedenbeck, C.; Sweeney, C.; Takahashi, T..
The Southern Ocean (44-75 degrees S) plays a critical role in the global carbon cycle, yet remains one of the most poorly sampled ocean regions. Different approaches have been used to estimate sea-air CO2 fluxes in this region: synthesis of surface ocean observations, ocean biogeochemical models, and atmospheric and ocean inversions. As part of the RECCAP (REgional Carbon Cycle Assessment and Processes) project, we combine these different approaches to quantify and assess the magnitude and variability in Southern Ocean sea-air CO2 fluxes between 1990-2009. Using all models and inversions (26), the integrated median annual sea-air CO2 flux of -0.42+/-0.07 Pg C yr(-1) for the 44-75 degrees S region, is consistent with the -0.27+/-0.13 Pg C yr(-1) calculated...
Tipo: Text
Ano: 2013 URL: https://archimer.ifremer.fr/doc/00253/36409/34949.pdf
Imagem não selecionada

Imprime registro no formato completo
Global Carbon Budget 2015 ArchiMer
Le Quere, C.; Moriarty, R.; Andrew, R. M.; Canadell, J. G.; Sitch, S.; Korsbakken, J. I.; Friedlingstein, P.; Peters, G. P.; Andres, R. J.; Boden, T. A.; Houghton, R. A.; House, J. I.; Keeling, R. F.; Tans, P.; Arneth, A.; Bakker, D. C. E.; Barbero, L.; Bopp, L.; Chang, J.; Chevallier, F.; Chini, L. P.; Ciais, P.; Fader, M.; Feely, R. A.; Gkritzalis, T.; Harris, I.; Hauck, J.; Ilyina, T.; Jain, A. K.; Kato, E.; Kitidis, V.; Goldewijk, K. Klein; Koven, C.; Landschuetzer, P.; Lauvset, S. K.; Lefevre, N.; Lenton, A.; Lima, I. D.; Metzl, N.; Millero, F.; Munro, D. R.; Murata, A.; Nabel, J. E. M. S.; Nakaoka, S.; Nojiri, Y.; O'Brien, K.; Olsen, A.; Ono, T.; Perez, Florian; Pfeil, B.; Pierrot, D.; Poulter, B.; Rehder, G.; Roedenbeck, C.; Saito, S.; Schuster, U.; Schwinger, J.; Seferian, R.; Steinhoff, T.; Stocker, B. D.; Sutton, A. J.; Takahashi, T.; Tilbrook, B.; Van Der Laan-luijkx, I. T.; Van Der Werf, G. R.; Van Heuven, S.; Vandemark, D.; Viovy, N.; Wiltshire, A.; Zaehle, S.; Zeng, N..
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates as well as consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry...
Tipo: Text
Ano: 2015 URL: https://archimer.ifremer.fr/doc/00383/49442/49934.pdf
Registros recuperados: 11
Primeira ... 1 ... Última
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional