|
|
|
|
|
Schuster, U.; Mckinley, G. A.; Bates, N.; Chevallier, F.; Doney, S. C.; Fay, A. R.; Gonzalez-davila, Melchor; Gruber, N.; Jones, S.; Krijnen, J.; Landschuetzer, P.; Lefevre, N.; Manizza, M.; Mathis, J.; Metzl, N.; Olsen, A.; Rios, A. F.; Roedenbeck, C.; Santana-casiano, J. M.; Takahashi, T.; Wanninkhof, R.; Watson, A. J.. |
The Atlantic and Arctic Oceans are critical components of the global carbon cycle. Here we quantify the net sea-air CO2 flux, for the first time, across different methodologies for consistent time and space scales for the Atlantic and Arctic basins. We present the long-term mean, seasonal cycle, interannual variability and trends in sea-air CO2 flux for the period 1990 to 2009, and assign an uncertainty to each. We use regional cuts from global observations and modeling products, specifically a pCO(2)-based CO2 flux climatology, flux estimates from the inversion of oceanic and atmospheric data, and results from six ocean biogeochemical models. Additionally, we use basin-wide flux estimates from surface ocean pCO(2) observations based on two distinct... |
Tipo: Text |
|
Ano: 2013 |
URL: https://archimer.ifremer.fr/doc/00153/26409/24508.pdf |
| |
|
|
Wanninkhof, R.; Park, G. -h.; Takahashi, T.; Sweeney, C.; Feely, R.; Nojiri, Y.; Gruber, N.; Doney, S. C.; Mckinley, G. A.; Lenton, A.; Le Quere, C.; Heinze, C.; Schwinger, J.; Graven, H.; Khatiwala, S.. |
Estimates of the anthropogenic global-integrated sea-air carbon dioxide (CO2) flux from 1990 to 2009, based on different models and measurements, range from –1.4 to –2.6 Pg C yr–1. The median values of anthropogenic CO2 for each method show better agreement and are: −1.9 for Pg C yr−1 for numerical ocean general circulation hind cast models (OGCMs) with parameterized biogeochemistry; –2.1 Pg C yr–1 for atmospheric inverse models; –1.9 Pg C yr–1 for global atmospheric constraints based on O2 / N2 ratios for 1990–2000; and –2.4 Pg C yr–1 for oceanic inverse models. An updated estimate of this anthropogenic CO2 flux based on a climatology of sea-air partial pressure of CO2 differences (ΔpCO2) (Takahashi et al., 2009) and a bulk formulation of gas transfer... |
Tipo: Text |
|
Ano: 2013 |
URL: https://archimer.ifremer.fr/doc/00141/25179/23285.pdf |
| |
|
|
Fay, A. R.; Mckinley, G. A.. |
Ocean carbon uptake substantially reduces the rate of anthropogenic carbon accumulation in the atmosphere and thus slows global climate change. In the interest of understanding how this ocean carbon sink has responded to climate variability and climate change in recent decades, trends in globally observed surface ocean partial pressure of CO2 (pCO(2)(s.ocean)) are evaluated over 16 gyre-scale biomes covering the globe. pCO(2)(s.ocean) trends have been of variable magnitude and sensitive to the chosen start and end years. On longer time frames, several regions of the tropics and subtropics display pCO(2)(s.ocean) trends that are parallel to or shallower than trends in atmospheric pCO(2), consistent with the ocean's long-term response to carbon accumulation... |
Tipo: Text |
Palavras-chave: Climate change; Surface ocean pCO(2); Carbon trends. |
Ano: 2013 |
URL: https://archimer.ifremer.fr/doc/00253/36407/34946.pdf |
| |
|
|
|