|
|
|
|
|
Paulatto, Michele; Laigle, Mireille; Galve, Audrey; Charvis, Philippe; Sapin, Martine; Bayrakci, Gaye; Evain, Mikael; Kopp, Heidrun. |
Subducting slabs carry water into the mantle and are a major gateway in the global geochemical water cycle. Fluid transport and release can be constrained with seismological data. Here we use joint active-source/local-earthquake seismic tomography to derive unprecedented constraints on multi-stage fluid release from subducting slow-spread oceanic lithosphere. We image the low P-wave velocity crustal layer on the slab top and show that it disappears beneath 60–100 km depth, marking the depth of dehydration metamorphism and eclogitization. Clustering of seismicity at 120–160 km depth suggests that the slab’s mantle dehydrates beneath the volcanic arc, and may be the main source of fluids triggering arc magma generation. Lateral variations in seismic... |
Tipo: Text |
|
Ano: 2017 |
URL: https://archimer.ifremer.fr/doc/00392/50321/51004.pdf |
| |
|
|
Paulatto, Michele; Moorkamp, Max; Hautmann, Stefanie; Hooft, Emilie; Morgan, Joanna V.; Sparks, R. Stephen J.. |
Recent advances in our understanding of arc magmatic systems indicate that melt is stored for long periods in low‐melt fraction crystal mushes, and that eruptible magma reservoirs are short‐lived and are assembled rapidly by buoyancy‐induced instabilities and draining of the crystal mush. Many aspects of their architecture remain unclear, particularly in relation to their geometry and shallow melt distribution. We investigate the storage of melt below the active Soufrière Hills Volcano (SHV), Montserrat, using joint geophysical inversion combined with a quantitative interpretation approach based on rock physics. We jointly inverted active‐source P‐wave traveltimes and gravity anomalies to derive coincident 3D models of P‐wave velocity and density to a... |
Tipo: Text |
|
Ano: 2019 |
URL: https://archimer.ifremer.fr/doc/00591/70321/68357.pdf |
| |
|
|
|