Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Ordenar por: 

RelevânciaAutorTítuloAnoImprime registros no formato resumido
Registros recuperados: 2
Primeira ... 1 ... Última
Imagem não selecionada

Imprime registro no formato completo
From emissions to source allocation: Synergies and trade-offs between top-down and bottom-up information ArchiMer
Sartini, Ludovica; Pisoni, E.; Thunis, P..
This study investigates the dispersion of atmospheric pollutants over a coastal region of north-western Italy by means of modelling techniques. A series of annual air quality model simulations corresponding to different emission reduction scenarios has been performed with a three-dimensional chemical transport modelling chain running at 3 km resolution. The emission reduction scenarios were used to develop bottom-up (locally produced) source-receptor relationships to perform a local source allocation analysis of the main atmospheric pollutants in a few polluted cities within the domain of interest. Results were compared with default top-down (EU-wide) source-receptor relationships, at roughly 7 km resolution. The results show the benefit of using the two...
Tipo: Text Palavras-chave: Source allocation; Air quality models; CHIMERE; Inventory emissions; SHERPA methodology.
Ano: 2020 URL: https://archimer.ifremer.fr/doc/00644/75649/76515.pdf
Imagem não selecionada

Imprime registro no formato completo
The transformed-stationary approach: a generic and simplified methodology for non-stationary extreme value analysis ArchiMer
Mentaschi, Lorenzo; Vousdoukas, Michalis; Voukouvalas, Evangelos; Sartini, Ludovica; Feyen, Luc; Besio, Giovanni; Alfieri, Lorenzo.
Statistical approaches to study extreme events require, by definition, long time series of data. In many scientific disciplines, these series are often subject to variations at different temporal scales that affect the frequency and intensity of their extremes. Therefore, the assumption of stationarity is violated and alternative methods to conventional stationary extreme value analysis (EVA) must be adopted. Using the example of environmental variables subject to climate change, in this study we introduce the transformed-stationary (TS) methodology for non-stationary EVA. This approach consists of (i) transforming a non-stationary time series into a stationary one, to which the stationary EVA theory can be applied, and (ii) reverse transforming the result...
Tipo: Text
Ano: 2016 URL: http://archimer.ifremer.fr/doc/00354/46490/46266.pdf
Registros recuperados: 2
Primeira ... 1 ... Última
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional