|
|
|
|
|
Gargallo-garriga, Albert; Sardans, Jordi; Llusià, Joan; Peguero, Guille; Asensio, Dolores; Ogaya, Romà; Urbina, Ifigenia; Langenhove, Leandro Van; Verryckt, Lore T.; Courtois, Elodie A.; Stahl, Clément; Grau, Oriol; Urban, Otmar; Janssens, Ivan A.; Nolis, Pau; Pérez-trujillo, Miriam; Parella, Teodor; Peñuelas, Josep. |
Productivity of tropical lowland moist forests is often limited by availability and functional allocation of phosphorus (P) that drives competition among tree species and becomes a key factor in determining forestall community diversity. We used non-target 31P-NMR metabolic profiling to study the foliar P-metabolism of trees of a French Guiana rainforest. The objective was to test the hypotheses that P-use is species-specific, and that species diversity relates to species P-use and concentrations of P-containing compounds, including inorganic phosphates, orthophosphate monoesters and diesters, phosphonates and organic polyphosphates. We found that tree species explained the 59% of variance in 31P-NMR metabolite profiling of leaves. A principal component... |
Tipo: Text |
Palavras-chave: P-31-NMR metabolic profiling; Iceland; Tropical lowland; P-containing compounds; Species-specific P-use niches. |
Ano: 2020 |
URL: https://archimer.ifremer.fr/doc/00648/76023/76922.pdf |
| |
|
|
Gargallo-garriga, Albert; Sardans, Jordi; Granda, Victor; Llusià, Joan; Peguero, Guille; Asensio, Dolores; Ogaya, Romà; Urbina, Ifigenia; Van Langenhove, Leandro; Verryckt, Lore T.; Chave, Jérome; Courtois, Elodie A.; Stahl, Clément; Grau, Oriol; Klem, Karel; Urban, Otmar; Janssens, Ivan A.; Peñuelas, Josep. |
Tropical rainforests harbor a particularly high plant diversity. We hypothesize that potential causes underlying this high diversity should be linked to distinct overall functionality (defense and growth allocation, anti-stress mechanisms, reproduction) among the different sympatric taxa. In this study we tested the hypothesis of the existence of a metabolomic niche related to a species-specific differential use and allocation of metabolites. We tested this hypothesis by comparing leaf metabolomic profiles of 54 species in two rainforests of French Guiana. Species identity explained most of the variation in the metabolome, with a species-specific metabolomic profile across dry and wet seasons. In addition to this “homeostatic” species-specific metabolomic... |
Tipo: Text |
|
Ano: 2020 |
URL: https://archimer.ifremer.fr/doc/00625/73686/73151.pdf |
| |
|
|
|